-
公开(公告)号:CN106503734A
公开(公告)日:2017-03-15
申请号:CN201610899753.X
申请日:2016-10-14
Applicant: 哈尔滨工程大学
CPC classification number: G06K9/6277 , G06K9/0063 , G06K9/46 , G06K9/6249 , G06K2009/00644 , G06K2009/4657 , G06N3/006
Abstract: 本发明提供的是一种基于三边滤波器和堆栈稀疏自动编码器的图像分类方法。首先,使用三边滤波器获取平滑的图像,提取所述图像的像素的光谱-空间特征的同时滤除退化图像的高斯、斑点和脉冲噪声;其次,使用改进的堆栈稀疏自动编码器进行高阶特征提取;最后,利用随机森林分类器进行有监督微调网络和分类。本发明将改进的堆栈稀疏自动编码器和随机森林分类器引入到高光谱数据分类中,作为一种深度学习架构,改进的堆栈稀疏自动编码器可以逐层地提取光谱数据的抽象的和有用的深层次特征,从而提高光谱数据的分类性能。本发明不仅适用于对高光谱图像进行分类,同时也可以对其他图像进行分类。具有很强的可移植性,更易满足图像分类的需求。
-
公开(公告)号:CN106503734B
公开(公告)日:2019-08-06
申请号:CN201610899753.X
申请日:2016-10-14
Applicant: 哈尔滨工程大学
Abstract: 本发明提供的是一种基于三边滤波器和堆栈稀疏自动编码器的图像分类方法。首先,使用三边滤波器获取平滑的图像,提取所述图像的像素的光谱‑空间特征的同时滤除退化图像的高斯、斑点和脉冲噪声;其次,使用改进的堆栈稀疏自动编码器进行高阶特征提取;最后,利用随机森林分类器进行有监督微调网络和分类。本发明将改进的堆栈稀疏自动编码器和随机森林分类器引入到高光谱数据分类中,作为一种深度学习架构,改进的堆栈稀疏自动编码器可以逐层地提取光谱数据的抽象的和有用的深层次特征,从而提高光谱数据的分类性能。本发明不仅适用于对高光谱图像进行分类,同时也可以对其他图像进行分类。具有很强的可移植性,更易满足图像分类的需求。
-
公开(公告)号:CN105184797B
公开(公告)日:2018-10-26
申请号:CN201510593935.X
申请日:2015-09-17
Applicant: 哈尔滨工程大学
IPC: G06T7/00
Abstract: 本发明涉及一种基于递归型核机器学习的高光谱异常目标检测方法。本发明包括:(1)输入高光谱数据;(2)选择核函数k(x,xi)=(xTxi)d,d∈N,建立核机器学习的高光谱目标检测模型,初始化Gram矩阵;(3)建立Gram矩阵KB(n)的状态方程;(4)利用Woodbury恒等式更新高光谱Gram矩阵KB(n)的逆矩阵[KB(n)]‑1;(5)结合异常检测算子对高光谱图像进行快速检测;(6)高光谱图像检测完毕,输出结果。本发明无需重复计算KB(n)及其逆矩阵,可以大大减少算法计算时间,提高了高光谱异常目标检测效率。
-
公开(公告)号:CN105184797A
公开(公告)日:2015-12-23
申请号:CN201510593935.X
申请日:2015-09-17
Applicant: 哈尔滨工程大学
IPC: G06T7/00
CPC classification number: G06T7/0002 , G06T2207/10036
Abstract: 本发明涉及一种基于递归型核机器学习的高光谱异常目标检测方法。本发明包括:(1)输入高光谱数据;(2)选择核函数k(x,xi)=(xTxi)d,d∈N,建立核机器学习的高光谱目标检测模型,初始化Gram矩阵;(3)建立Gram矩阵KB(n)的状态方程;(4)利用Woodbury恒等式更新高光谱Gram矩阵KB(n)的逆矩阵[KB(n)]-1;(5)结合异常检测算子对高光谱图像进行快速检测;(6)高光谱图像检测完毕,输出结果。本发明无需重复计算KB(n)及其逆矩阵,可以大大减少算法计算时间,提高了高光谱异常目标检测效率。
-
-
-