-
公开(公告)号:CN119021817A
公开(公告)日:2024-11-26
申请号:CN202411514038.0
申请日:2024-10-29
Applicant: 哈尔滨工程大学 , 烟台哈尔滨工程大学研究院
IPC: F03B13/18 , F16F15/067 , H02K7/18
Abstract: 本发明涉及波能转换设备技术领域,尤其是一种嵌入浮标内的双频共振波能转换装置及转换方法,包括:第一波能转换系统,嵌入安装在浮标内部,用于捕捉波浪场中的波浪能并转化为机械能;第二波能转换系统,安装于第一波能转换系统内部,用于将第一波能转换系统传递的机械能传递给电能转换输出系统,并与第一波能转换系统耦合,通过调节第一波能转换系统和第二波能转换系统的关键结构参数,有效提高装置的俘获宽度和共振频率范围;电能转换输出系统,用于将第一波能转换系统和第二波能转换系统共同作用下捕捉的机械能转化为电能输出,该装置能够解决相关技术中波能转换装置在不规则波载荷下俘获宽度比狭窄且俘获效率低和环境适应性差的技术问题。
-
公开(公告)号:CN109765890B
公开(公告)日:2022-07-29
申请号:CN201910033307.4
申请日:2019-01-14
Applicant: 哈尔滨工程大学
Abstract: 一种基于遗传算法的多USV群体协同避碰规划方法,属于USV控制技术领域。本发明首先采用浮点数编码方式对USV的速度调节量和艏向调节量进行初始化编码并设置其他控制参数;然后构建评价函数,计算出种群的每代个体的评价函数值从而对种群个体进行轮盘赌选择、离散交叉、高斯变异的遗传操作,建立迭代过程得出最优解;最后利用QT软件构建USV避碰规划仿真软件平台,添加雷达探测模块和遗传算法,设计典型的仿真案例验证算法的有效性。本发明解决了遗传算法的时效性差、陷入局部最优、过早收敛、子代最优劣于父代最优等问题以及航行过程的大角度转向、大范围加减速的不良航行问题。
-
公开(公告)号:CN109597417B
公开(公告)日:2022-04-05
申请号:CN201910033309.3
申请日:2019-01-14
Applicant: 哈尔滨工程大学
IPC: G05D1/02
Abstract: 本发明属于USV控制技术领域,具体涉及一种基于避碰准则的多USV群体协同避碰规划方法。该方法包括:步骤1、制定合理的USV避碰规则;步骤2、多USV系统建模,计算运动参数和碰撞危险度;步骤3、构建USV避碰规划仿真软件平台,添加雷达探测模块和遗传算法,设计典型的仿真案例验证算法的有效性。本发明使多个USV从起点出发躲避环境中所有静态障碍物到达终点,在整个航行过程中USV之间不发生碰撞且在相遇时遵守避碰准则采取避碰策略,同时避免出现大角度转向、紧急加减速的情况。本发明致力找到严格遵守避碰准则的多USV避碰规划方法,并且解决航行过程的大角度转向、大范围加减速的不良航行问题。实现路径最短、符合经济性、平滑性、安全性的最优避碰。
-
公开(公告)号:CN110750096A
公开(公告)日:2020-02-04
申请号:CN201910953377.1
申请日:2019-10-09
Applicant: 哈尔滨工程大学
Abstract: 本发明属于移动机器人导航技术领域,具体涉及一种静态环境下基于深度强化学习的移动机器人避碰规划方法。本发明使用激光测距仪采集原始数据,将处理后的数据作为A3C算法的状态S,通过构建A3C-LSTM神经网络,将状态S作为网络输入,通过A3C算法,神经网络输出相应参数,利用参数通过正态分布选择移动机器人每一步执行的动作。本发明无需对环境进行建模,通过深度强化学习算法最终实现移动机器人成功在复杂静态障碍物环境下避障。本发明设计具有转艏约束的连续动作空间模型,且采用多线程异步学习,与一般深度强化学习方法相比,大大提高学习训练时间,减少样本相关性,保障探索空间的高利用性与探索策略的多样性,提升算法收敛性、稳定性以及避障成功率。
-
公开(公告)号:CN110750096B
公开(公告)日:2022-08-02
申请号:CN201910953377.1
申请日:2019-10-09
Applicant: 哈尔滨工程大学
Abstract: 本发明属于移动机器人导航技术领域,具体涉及一种静态环境下基于深度强化学习的移动机器人避碰规划方法。本发明使用激光测距仪采集原始数据,将处理后的数据作为A3C算法的状态S,通过构建A3C‑LSTM神经网络,将状态S作为网络输入,通过A3C算法,神经网络输出相应参数,利用参数通过正态分布选择移动机器人每一步执行的动作。本发明无需对环境进行建模,通过深度强化学习算法最终实现移动机器人成功在复杂静态障碍物环境下避障。本发明设计具有转艏约束的连续动作空间模型,且采用多线程异步学习,与一般深度强化学习方法相比,大大提高学习训练时间,减少样本相关性,保障探索空间的高利用性与探索策略的多样性,提升算法收敛性、稳定性以及避障成功率。
-
公开(公告)号:CN110716574A
公开(公告)日:2020-01-21
申请号:CN201910934428.6
申请日:2019-09-29
Applicant: 哈尔滨工程大学
IPC: G05D1/06
Abstract: 本发明属于UUV控制技术领域,具体涉及一种基于深度Q网络的UUV实时避碰规划方法。本发明使网络体系在复杂环境的局部避碰规划时具有自我学习的能力实现端到端模型,不对输入的声呐数据进行人工提取特征和特征匹配,直接从原始数据集上学习状态与动作的映射关系,将深度学习和强化学习相结合应用到避碰规划问题的解决上。本发明使用深度强化学习,无需像深度学习那样进行大规模的采样和做标签,也不像传统的方法需建立环境和UUV本身的数学模型,无需环境的模型,采用强化学习不会因为路径过于复杂而无法执行策略,使其在实际应用中缩短了项目的开发周期、实施更加简洁、高效、鲁棒性高。
-
公开(公告)号:CN109597417A
公开(公告)日:2019-04-09
申请号:CN201910033309.3
申请日:2019-01-14
Applicant: 哈尔滨工程大学
IPC: G05D1/02
Abstract: 本发明属于USV控制技术领域,具体涉及一种基于避碰准则的多USV群体协同避碰规划方法。该方法包括:步骤1、制定合理的USV避碰规则;步骤2、多USV系统建模,计算运动参数和碰撞危险度;步骤3、构建USV避碰规划仿真软件平台,添加雷达探测模块和遗传算法,设计典型的仿真案例验证算法的有效性。本发明使多个USV从起点出发躲避环境中所有静态障碍物到达终点,在整个航行过程中USV之间不发生碰撞且在相遇时遵守避碰准则采取避碰策略,同时避免出现大角度转向、紧急加减速的情况。本发明致力找到严格遵守避碰准则的多USV避碰规划方法,并且解决航行过程的大角度转向、大范围加减速的不良航行问题。实现路径最短、符合经济性、平滑性、安全性的最优避碰。
-
公开(公告)号:CN110716574B
公开(公告)日:2023-05-02
申请号:CN201910934428.6
申请日:2019-09-29
Applicant: 哈尔滨工程大学
IPC: G05D1/06
Abstract: 本发明属于UUV控制技术领域,具体涉及一种基于深度Q网络的UUV实时避碰规划方法。本发明使网络体系在复杂环境的局部避碰规划时具有自我学习的能力实现端到端模型,不对输入的声呐数据进行人工提取特征和特征匹配,直接从原始数据集上学习状态与动作的映射关系,将深度学习和强化学习相结合应用到避碰规划问题的解决上。本发明使用深度强化学习,无需像深度学习那样进行大规模的采样和做标签,也不像传统的方法需建立环境和UUV本身的数学模型,无需环境的模型,采用强化学习不会因为路径过于复杂而无法执行策略,使其在实际应用中缩短了项目的开发周期、实施更加简洁、高效、鲁棒性高。
-
公开(公告)号:CN109765890A
公开(公告)日:2019-05-17
申请号:CN201910033307.4
申请日:2019-01-14
Applicant: 哈尔滨工程大学
Abstract: 一种基于遗传算法的多USV群体协同避碰规划方法,属于USV控制技术领域。本发明首先采用浮点数编码方式对USV的速度调节量和艏向调节量进行初始化编码并设置其他控制参数;然后构建评价函数,计算出种群的每代个体的评价函数值从而对种群个体进行轮盘赌选择、离散交叉、高斯变异的遗传操作,建立迭代过程得出最优解;最后利用QT软件构建USV避碰规划仿真软件平台,添加雷达探测模块和遗传算法,设计典型的仿真案例验证算法的有效性。本发明解决了遗传算法的时效性差、陷入局部最优、过早收敛、子代最优劣于父代最优等问题以及航行过程的大角度转向、大范围加减速的不良航行问题。
-
-
-
-
-
-
-
-