基于深度学习的水下爆炸气泡形态及附近流场压力预测方法

    公开(公告)号:CN114528759B

    公开(公告)日:2022-09-09

    申请号:CN202210125411.8

    申请日:2022-02-10

    Abstract: 本发明公开了一种基于深度学习的水下爆炸气泡形态及附近流场压力预测方法,包括:对水下爆炸气泡脉动特性进行数值计算,通过改变药包质量和爆炸水深,建立不同水下爆炸条件下气泡体积最大及最小时刻形态及附近流场压力的样本数据库;将样本数据库划分为训练集和验证集,以建立用于预测水下爆炸气泡体积最大及最小时刻形态的全连接深度神经网络模型,以预测气泡形态;基于所预测的气泡形态建立表征流场各点至气泡轮廓的最小距离函数;基于样本数据库和最小距离函数,建立用于预测水下爆炸气泡体积最大及最小时刻气泡附近流场压力的卷积反卷积神经网络模型,以预测典型时刻气泡附近流场压力。该方法可减少实验和数值模拟成本,以及提高预测效率。

    基于深度学习的水下爆炸气泡形态及附近流场压力预测方法

    公开(公告)号:CN114528759A

    公开(公告)日:2022-05-24

    申请号:CN202210125411.8

    申请日:2022-02-10

    Abstract: 本发明公开了一种基于深度学习的水下爆炸气泡形态及附近流场压力预测方法,包括:对水下爆炸气泡脉动特性进行数值计算,通过改变药包质量和爆炸水深,建立不同水下爆炸条件下气泡体积最大及最小时刻形态及附近流场压力的样本数据库;将样本数据库划分为训练集和验证集,以建立用于预测水下爆炸气泡体积最大及最小时刻形态的全连接深度神经网络模型,以预测气泡形态;基于所预测的气泡形态建立表征流场各点至气泡轮廓的最小距离函数;基于样本数据库和最小距离函数,建立用于预测水下爆炸气泡体积最大及最小时刻气泡附近流场压力的卷积反卷积神经网络模型,以预测典型时刻气泡附近流场压力。该方法可减少实验和数值模拟成本,以及提高预测效率。

Patent Agency Ranking