基于深度强化学习的优先级无人机编队动态信道分配方法及其系统

    公开(公告)号:CN113657016A

    公开(公告)日:2021-11-16

    申请号:CN202010397272.5

    申请日:2020-05-12

    Abstract: 本发明提供一种基于深度强化学习的优先级无人机编队动态信道分配方法及其系统,该方法包括:对无人机编队信道的动态分配过程建立模型,并在模型中建立无人机在环境中的环境状态、动作集合以及奖赏函数,无人机的业务具有优先级;将LSTM加入到DQN中形成改进型深度强化学习网络模型;利用模型对改进型深度强化学习网络模型进行训练;以及利用训练后的改进型深度强化学习网络模型对无人机编队动态分配信道。根据本申请,改善了有优先级的网络下的无人机群网络用频自主决策。通过对无人机编队信道的动态分配过程进行建模来评估无人机因为等待所造成的丢包影响,并且通过将LSTM引入到中加快了DQN训练的收敛速度。

    基于深度强化学习的优先级无人机编队动态信道分配方法及其系统

    公开(公告)号:CN113657016B

    公开(公告)日:2024-07-05

    申请号:CN202010397272.5

    申请日:2020-05-12

    Abstract: 本发明提供一种基于深度强化学习的优先级无人机编队动态信道分配方法及其系统,该方法包括:对无人机编队信道的动态分配过程建立模型,并在模型中建立无人机在环境中的环境状态、动作集合以及奖赏函数,无人机的业务具有优先级;将LSTM加入到DQN中形成改进型深度强化学习网络模型;利用模型对改进型深度强化学习网络模型进行训练;以及利用训练后的改进型深度强化学习网络模型对无人机编队动态分配信道。根据本申请,改善了有优先级的网络下的无人机群网络用频自主决策。通过对无人机编队信道的动态分配过程进行建模来评估无人机因为等待所造成的丢包影响,并且通过将LSTM引入到中加快了DQN训练的收敛速度。

Patent Agency Ranking