-
公开(公告)号:CN111654479A
公开(公告)日:2020-09-11
申请号:CN202010438357.3
申请日:2020-05-22
Applicant: 哈尔滨工程大学
IPC: H04L29/06 , H04L12/24 , H04L12/26 , H04L12/721
Abstract: 本发明属于信息中心网络的洪泛攻击检测技术领域,具体涉及一种基于随机森林与XGBoost的洪泛攻击检测方法。本发明采用当前较流行的集成学习算法随机森林和梯度提升算法XGBoost,在特征选择方面,提出了基于集成学习思想的特征选择模型,模型采用随机森林算法,解决了模型特征选择问题,提高了检测模块构建的速度,降低了过拟合的风险,提升了检测模块的准确率。本发明解决了传统统计检测方法需要手动设置阈值的问题,方法通过模型学习得到分类标准,降低了阈值设置对检测率的影响,提升了分类效果,增加了虚假兴趣包洪泛攻击检测的准确率。
-
公开(公告)号:CN111628982B
公开(公告)日:2022-03-18
申请号:CN202010438355.4
申请日:2020-05-22
Applicant: 哈尔滨工程大学
IPC: H04L9/40
Abstract: 本发明属于信息中心网络的洪泛攻击缓解技术领域,具体涉及一种基于信誉度与基尼杂质的洪泛攻击缓解方法。本发明提出的缓解手段部署在边缘路由器,通过限制恶意数据,能够将洪泛攻击在源头被缓解,减少攻击对核心网络的影响;在内容名称方面,提出全名称前缀的概念,降低了字典树的空间开销,减少方法的空间复杂度;在恶意前缀识别方面,本发明提出了基尼杂质与全名称前缀组合识别方法,基于统计学理论基尼杂质和路由器的PIT结构,实现了恶意内容名称的识别;在正常用户的数据传输方面。本发明可以适应更加复杂的网络环境,能够在攻击者发出洪泛攻击的情况下定位受攻击的端口,在缓解洪泛攻击的情况下尽最大努力不影响正常的用户。
-
公开(公告)号:CN111628982A
公开(公告)日:2020-09-04
申请号:CN202010438355.4
申请日:2020-05-22
Applicant: 哈尔滨工程大学
IPC: H04L29/06
Abstract: 本发明属于信息中心网络的洪泛攻击缓解技术领域,具体涉及一种基于信誉度与基尼杂质的洪泛攻击缓解方法。本发明提出的缓解手段部署在边缘路由器,通过限制恶意数据,能够将洪泛攻击在源头被缓解,减少攻击对核心网络的影响;在内容名称方面,提出全名称前缀的概念,降低了字典树的空间开销,减少方法的空间复杂度;在恶意前缀识别方面,本发明提出了基尼杂质与全名称前缀组合识别方法,基于统计学理论基尼杂质和路由器的PIT结构,实现了恶意内容名称的识别;在正常用户的数据传输方面。本发明可以适应更加复杂的网络环境,能够在攻击者发出洪泛攻击的情况下定位受攻击的端口,在缓解洪泛攻击的情况下尽最大努力不影响正常的用户。
-
-