-
公开(公告)号:CN104168569B
公开(公告)日:2017-11-17
申请号:CN201410334032.5
申请日:2014-07-15
Applicant: 哈尔滨工程大学
IPC: H04W16/10
Abstract: 本发明涉及一种认知异构网络的动态频谱分配方法,设置从量子和声集合中进行选择的概率HMCR,对基于量子和声的动态频谱方法进行初始化;对每个量子和声的量子音调进行测量得到和声库x和和声记忆库H,对每个和声进行适应度计算,对应的适应度值分别保存在Fit和Fit1中;若rand<HMCR,则继承上一代量子和声的量子音调,启动量子旋转门产生新解;若rand>HMCR,则随机生成一个Tent伪混沌序列,产生新的量子和声;依次对每个量子和声的量子音调进行测量得到其对应的和声,并进行适应度计算,替换Fit1中的对应适应度值;循环迭代输出和声记忆库H中的全局最优和声,全局最优和声映射得到的频谱分配矩阵A即为该认知异构网络的最优频谱分配方案。
-
公开(公告)号:CN104168569A
公开(公告)日:2014-11-26
申请号:CN201410334032.5
申请日:2014-07-15
Applicant: 哈尔滨工程大学
IPC: H04W16/10
Abstract: 本发明涉及一种认知异构网络的动态频谱分配方法,设置从量子和声集合中进行选择的概率HMCR,对基于量子和声的动态频谱方法进行初始化;对每个量子和声的量子音调进行测量得到和声库x和和声记忆库H,对每个和声进行适应度计算,对应的适应度值分别保存在Fit和Fit1中;若rand<HMCR,则继承上一代量子和声的量子音调,启动量子旋转门产生新解;若rand>HMCR,则随机生成一个Tent伪混沌序列,产生新的量子和声;依次对每个量子和声的量子音调进行测量得到其对应的和声,并进行适应度计算,替换Fit1中的对应适应度值;循环迭代输出和声记忆库H中的全局最优和声,全局最优和声映射得到的频谱分配矩阵A即为该认知异构网络的最优频谱分配方案。
-