-
公开(公告)号:CN106056141A
公开(公告)日:2016-10-26
申请号:CN201610363559.X
申请日:2016-05-27
Applicant: 哈尔滨工程大学
CPC classification number: G06K9/6269 , G06K9/6285 , G06N3/02
Abstract: 本发明提供一种使用空间稀疏编码的目标识别与角度粗估计算法,首先取不同目标的等间隔角度(15°)的图像作为训练集,获取并根据标准差筛选每个图像的空间碎片;继而对每幅独立的图像中的碎片,进行白化与PCA相结合的预处理;然后利用空间碎片分开训练每个目标的字典(子字典);去除每个子字典中无用的基之后,将子字典整体合并成一个大字典,使用此大字典重获训练集图像碎片的稀疏编码系数,并统计每幅图像内的碎片使用大字典中各个基的次数,以此作为各幅训练图像的特征向量;最后通过计算测试目标图像在大字典中的基的使用次数向量(特征向量)与训练集中各幅图像的特征向量的相关系数,实现目标分类与角度粗估计。
-
公开(公告)号:CN106067172B
公开(公告)日:2018-10-26
申请号:CN201610363682.1
申请日:2016-05-27
Applicant: 哈尔滨工程大学
IPC: G06T7/33
Abstract: 本发明提供一种基于适配性分析的水下地形图像粗匹配与精匹配结合的方法,针对声纳系统探测到的水下地形高程数据,获取其实时图像,首先分析模板区域内的适配性,如果适合匹配,再通过航向角偏离程度选择不同匹配方式,对待测区进行匹配。若航向角偏离较大,直接采用精匹配方式;若航向角偏离较小,采用由粗到精的分层匹配方式。其中使用灰度的绝对差算法对水下地形图像进行粗匹配;精匹配步骤是选取灰度共生矩阵的最大相关系数、灰度‑梯度共生矩阵的均值和7个不变矩,共9个特征参数构成特征向量,使用这些特征向量对图像进行精匹配。在同等外界干扰、使用相同位置匹配算法时,能够对水下地形适配性做到良好地判断,提高了判断正确率。
-
公开(公告)号:CN106056141B
公开(公告)日:2019-04-19
申请号:CN201610363559.X
申请日:2016-05-27
Applicant: 哈尔滨工程大学
Abstract: 本发明提供一种使用空间稀疏编码的目标识别与角度粗估计算法,首先取不同目标的等间隔角度(15°)的图像作为训练集,获取并根据标准差筛选每个图像的空间碎片;继而对每幅独立的图像中的碎片,进行白化与PCA相结合的预处理;然后利用空间碎片分开训练每个目标的字典(子字典);去除每个子字典中无用的基之后,将子字典整体合并成一个大字典,使用此大字典重获训练集图像碎片的稀疏编码系数,并统计每幅图像内的碎片使用大字典中各个基的次数,以此作为各幅训练图像的特征向量;最后通过计算测试目标图像在大字典中的基的使用次数向量(特征向量)与训练集中各幅图像的特征向量的相关系数,实现目标分类与角度粗估计。
-
公开(公告)号:CN106067172A
公开(公告)日:2016-11-02
申请号:CN201610363682.1
申请日:2016-05-27
Applicant: 哈尔滨工程大学
IPC: G06T7/00
CPC classification number: G06T2207/10004
Abstract: 本发明提供一种基于适配性分析的水下地形图像粗匹配与精匹配结合的方法,针对声纳系统探测到的水下地形高程数据,获取其实时图像,首先分析模板区域内的适配性,如果适合匹配,再通过航向角偏离程度选择不同匹配方式,对待测区进行匹配。若航向角偏离较大,直接采用精匹配方式;若航向角偏离较小,采用由粗到精的分层匹配方式。其中使用灰度的绝对差算法对水下地形图像进行粗匹配;精匹配步骤是选取灰度共生矩阵的最大相关系数、灰度‑梯度共生矩阵的均值和7个不变矩,共9个特征参数构成特征向量,使用这些特征向量对图像进行精匹配。在同等外界干扰、使用相同位置匹配算法时,能够对水下地形适配性做到良好地判断,提高了判断正确率。
-
-
-