基于表示学习的相似移动应用计算方法及装置

    公开(公告)号:CN110879861B

    公开(公告)日:2023-07-14

    申请号:CN201910834941.8

    申请日:2019-09-05

    Abstract: 本发明公开了一种基于表示学习的相似移动应用计算方法,所述方法包括:读取移动应用相关的文档、网页以及图数据库中的三元组,获取与文档、网页以及图数据库中与所述移动应用相关的实体,构建表示学习算法‑网络嵌入模型LINE网络;基于LINE负采样技术优化Skip‑gram模型,通过所述Skip‑gram模型训练所述LINE网络,得到每个实体以及移动应用自身的向量表示;根据每个实体以及移动应用自身的向量表示,对移动应用进行相似度计算。

    基于逐点互信息技术的诈骗信息特征词提取方法及系统

    公开(公告)号:CN107992473B

    公开(公告)日:2021-04-27

    申请号:CN201711190871.4

    申请日:2017-11-24

    Abstract: 本发明涉及一种基于逐点互信息技术的诈骗信息特征词提取方法及系统,该提取方法包括:提取诈骗信息主题关键词,组成主题关键词集合;将信息组中的信息按是否为诈骗信息划分为正样本集合和负样本集合,并得到正样本分词集合、负样本候分词集合和候选关键词集合;根据候选关键词集合的候选关键词在信息组的正相互性PMI值和负相互性PMI值得到候选关键词在信息组的权重,将权重大于预设阈值的候选关键词记为信息组的合格关键词。本发明通过对信息组中的信息进行处理,得到候选关键词集合,计算候选关键词相对于信息的正相互性PMI值和负相互性PMI值,得到候选关键词的权重,由此判断是否为合格关键词,实现了对数据流式信息的关键词提取。

    基于深层神经网络翻译模型的解码方法

    公开(公告)号:CN108647214A

    公开(公告)日:2018-10-12

    申请号:CN201810270468.0

    申请日:2018-03-29

    Abstract: 本发明涉及语言处理领域,提出了一种基于深层神经网络翻译模型的解码方法,旨在解决机器翻译模型中模型训练复杂度高、训练难度大解码速度慢等问题。该方法的具体实施方式包括:对待翻译语句进行分词处理,得到源语言词汇;步骤2,使用自动对齐工具对预设的翻译模型词汇表中的语料进行词对齐,得到与所述源语言词汇对齐的目标语言单词;步骤3,基于步骤2所得到的目标语言单词,确定出所述待翻译语句的目标端动态词汇表,根据预先构建的翻译模型,使用柱搜索方法解码出的语句作为所述翻译模型的输出;其中,所述翻译模型为基于门限残差机制和平行注意力机制的深层神经网络。本发明提升了模型翻译质量,提高了模型解码速度。

    基于逐点互信息技术的诈骗信息特征词提取方法及系统

    公开(公告)号:CN107992473A

    公开(公告)日:2018-05-04

    申请号:CN201711190871.4

    申请日:2017-11-24

    Abstract: 本发明涉及一种基于逐点互信息技术的诈骗信息特征词提取方法及系统,该提取方法包括:提取诈骗信息主题关键词,组成主题关键词集合;将信息组中的信息按是否为诈骗信息划分为正样本集合和负样本集合,并得到正样本分词集合、负样本候分词集合和候选关键词集合;根据候选关键词集合的候选关键词在信息组的正相互性PMI值和负相互性PMI值得到候选关键词在信息组的权重,将权重大于预设阈值的候选关键词记为信息组的合格关键词。本发明通过对信息组中的信息进行处理,得到候选关键词集合,计算候选关键词相对于信息的正相互性PMI值和负相互性PMI值,得到候选关键词的权重,由此判断是否为合格关键词,实现了对数据流式信息的关键词提取。

Patent Agency Ranking