-
公开(公告)号:CN111863007A
公开(公告)日:2020-10-30
申请号:CN202010554629.6
申请日:2020-06-17
Applicant: 国家计算机网络与信息安全管理中心 , 讯飞智元信息科技有限公司
IPC: G10L21/0208 , G10L21/0272 , G06N3/04
Abstract: 本发明公开了一种基于深度学习的语音增强方法及系统,该方法包括如下步骤:步骤SS1:获得带噪语音的多个IRM预测值的解的集合;步骤SS2:将来自所述Boosting-DNN语音增强模型输出的IRM的解的集合拼接带噪特征作为输入,预测最终的IRM预测值集合 本发明通过将Boosting-DNN语音增强模型和Ensemble-DNN集成语音增强模型这两个DNN串接起来的方式,有效的解决了一个神经网络由于层次太深训练不稳定的现象,构建一种非常深的网络结构,彻底解决前端语音增强技术就可以确保把语音从带噪信号中分离出来,以便后端识别模型能正确识别语音的内容。
-
公开(公告)号:CN112435672A
公开(公告)日:2021-03-02
申请号:CN202011105330.9
申请日:2020-10-15
Applicant: 讯飞智元信息科技有限公司 , 国家计算机网络与信息安全管理中心
Abstract: 本发明公开了一种声纹识别方法、装置、设备及存储介质,该方法包括:获取用户的包含登录指令待识别的音频数据,输入声纹提取模型,输出声学特征;将所述声学特征输入已训练的声纹识别模型,输出识别文本;根据预先存储的验证音频数据对所述识别文本进行识别,以识别用户身份;响应于所述用户身份识别成功,执行所述登录执行。本发明针对如何解决由于传统声纹识别算法的局限性,通过获取用户的包含登录指令待识别的音频数据,输入声纹提取模型,输出声学特征;将所述声学特征输入已训练的声纹识别模型,输出识别文本;根据预先存储的验证音频数据对所述识别文本进行识别,以识别用户身份,提高音频数据进行登录验证的准确率。
-
公开(公告)号:CN111785281A
公开(公告)日:2020-10-16
申请号:CN202010554305.2
申请日:2020-06-17
Applicant: 国家计算机网络与信息安全管理中心 , 讯飞智元信息科技有限公司
IPC: G10L17/02 , G10L17/04 , G10L17/06 , G10L17/18 , G10L21/0208
Abstract: 本发明公开了一种基于信道补偿的声纹识别方法及系统,该方法包括如下步骤:步骤SS1:初始化去噪网络G和判别网络D;步骤SS2:输入噪声音频到去噪网络G,生成fake音频,将所述fake音频和真实的干净音频送入到判别网络D进行训练,更新判别网络D的网络参数,得到新一代判别网络D1;步骤SS3:冻结判别网络D1的参数,在去噪网络G中输入噪声音频,同时将对应的判别标签设为True,来欺骗判别网络D1;步骤SS4:重复步骤SS2至步骤SS3,直至判别网络D收敛,转入步骤SS5;步骤SS5:去噪网络G输出增强音频信号。本发明对于声纹识别大幅提高了整体准确率。
-
公开(公告)号:CN113205801B
公开(公告)日:2024-03-19
申请号:CN202110498059.8
申请日:2021-05-08
Applicant: 国家计算机网络与信息安全管理中心 , 清华大学
Abstract: 本申请涉及一种恶意语音样本的确定方法、装置、计算机设备和存储介质。该方法包括:获取初始语音样本集;根据预设的多种恶意类别对初始语音样本集进行分类,得到多种恶意类别中每种恶意类别对应的语音样本子集;根据每种恶意类别对应的语音样本子集中的语音样本信息,计算每种恶意类别对应的语音样本子集的恶意度;将恶意度满足预设恶意度条件的恶意类别对应的语音样本子集中的语音样本,确定为恶意语音样本。本方法基于语音样本子集的恶意类别以及恶意度可自动确定恶意语音样本,有利于提高恶意语音样本的确定效率。
-
公开(公告)号:CN117095673A
公开(公告)日:2023-11-21
申请号:CN202310830037.6
申请日:2023-07-07
Applicant: 国家计算机网络与信息安全管理中心
Abstract: 本发明涉及语音识别领域,尤其为一种特定场景语音内容识别优化方法,包括如下步骤:包括如下步骤:S1:使用网络爬虫技术对网络中特定场景的语音进行爬取,获得初始语音数据;S2:提取初始语音数据并对初始语音数据进行数据预处理获得预处理数据;S3:通过卷积神经网络训练实用模型,对预处理数据进行语音识别并生成初始文本;S4:使用文本规范算法对初始文本进行文本润色保证输出最终文本的正确性。本发明通过对获取的语音进行预处理起到数据增强的作用保证了数据不失真,在获取到不失真的数据后对其进行特征提取确保了工作速度,对提取出的初始文本进行文本规范算法用常见的文本代替初始文本中出现的非人类语言,保证最后出现的文本不会出现错误。
-
公开(公告)号:CN111341319B
公开(公告)日:2023-05-16
申请号:CN201811559040.4
申请日:2018-12-19
Applicant: 中国科学院声学研究所 , 国家计算机网络与信息安全管理中心
Abstract: 本发明公开了一种基于局部纹理特征的音频场景识别方法,所述方法包括:将待识别的音频信号进行预处理后逐帧提取Mel‑fbank特征和描述局部纹理的LTP特征;进行融合后输入预先训练得到的时延深度神经网络模型;得到对应于不同音频场景类型的后验概率;采用后处理决策机制处理后验概率获取待识别音频信号对应的音频场景标签。本发明的音频场景识别方法,基于对场景时频信息的有效表征,更好地实现了音频场景种类的识别。
-
公开(公告)号:CN115915038A
公开(公告)日:2023-04-04
申请号:CN202110805859.X
申请日:2021-07-16
Applicant: 国家计算机网络与信息安全管理中心 , 中国科学院信息工程研究所
Abstract: 本发明公开了一种基于移动用户信令数据的跨城通勤用户识别方法及装置,包括:基于每一周期的白天时间段与夜间时间段,利用目标区域的移动用户信令数据获取该周期日工作用户与该周期日居住用户;依据该周期日工作用户的该周期夜间信令数据与该周期日居住用户的该周期白天信令数据,分别得到该周期夜间信令消失用户与该周期白天信令消失用户;利用全部移动用户在设定时间段内成为该周期夜间信令消失用户或该周期白天信令消失用户的次数,得到跨城通勤用户识别结果。本发明基于原始信令数据挖掘跨城通勤用户,采用Spark计算框架进行分析处理,具有高可靠性和高效率,可用于区域人口监管。
-
公开(公告)号:CN110111814B
公开(公告)日:2021-09-21
申请号:CN201910419117.6
申请日:2019-05-20
Applicant: 国家计算机网络与信息安全管理中心
Abstract: 本发明实施例提供一种网络类型识别方法及装置。所述方法包括:获取待识别语音;将待识别语音输入至预设的网络识别模型,得到识别结果;其中,所述网络识别模型为通过样本数据对随机森林模型以及支持向量机模型进行预设数据训练得到的。本发明实施例将网络类型识别的过程自动化实现,效率较高,可有效降低人工成本;且网络识别通过机器学习的方式建立,满足精确度需求;预先通过大量样本数据建立网络识别模型,适用于VoIP通话;本发明实施例解决了现有技术中,VoIP电话的出现使得难以准确地根据号码判断主叫方网络类型的问题。
-
公开(公告)号:CN113326689A
公开(公告)日:2021-08-31
申请号:CN202010128327.2
申请日:2020-02-28
Applicant: 中国科学院声学研究所 , 国家计算机网络与信息安全管理中心
IPC: G06F40/205 , G06F40/211 , G06N20/00 , G06K9/62
Abstract: 本发明属于数据通信和数据处理技术领域,具体涉及一种基于深度强化学习模型的数据清洗方法,该方法包括:获取待清洗的带标签的数据集;采用预筛选算法,删除待清洗的带标签的数据集中的无内容数据、不在标签集内的标签数据和标签矛盾的数据,获得待分类的数据集;将待分类的数据集输入至预先训练的深度强化学习模型中,获得不同类别的延迟奖励;再根据获得的不同类别的延迟奖励,依据预先训练的深度强化学习模型中的动作集合,丢弃掉有偏数据,保留有效数据,并更新状态列表S,最大化每一类别的延迟奖励值,将每一类别的最大延迟奖励值对应的带标签的训练数据集作为清洗干净的带标签的训练数据集,从而完成数据清洗。
-
公开(公告)号:CN113115363A
公开(公告)日:2021-07-13
申请号:CN202110426526.6
申请日:2021-04-20
Applicant: 国家计算机网络与信息安全管理中心
Inventor: 倪善金 , 万辛 , 黄远 , 孙晓晨 , 宁珊 , 沈亮 , 高圣翔 , 计哲 , 杨晶超 , 张震 , 李鹏 , 石瑾 , 李沁 , 侯炜 , 刁则鸣 , 刘发强 , 孙旭东 , 王立强 , 刘睿霖
IPC: H04W28/02 , H04W28/08 , H04B17/318 , H04B17/382
Abstract: 本公开提供一种异构网络中的移动通信方法、装置与电子设备。异构网络中的移动通信方法包括:确定目标用户在所述目标异构网络中的目标位置确定所述目标位置处于所述目标低功率节点的目标信号范围内,所述目标信号范围是根据所述目标低功率节点与所述宏基站之间的目标信号强度边界和所述目标信号强度边界的目标范围扩展基基确定的将所述目标用户与所述宏基站之间通信切换为所述目标用户与所述目标低功率节点进行通信。本公开实施例提供的技术方案可以通过低功率节点的覆盖边界扩展,降低宏基站的负载,提高异构网络中用户的网络信号强度,增强系统的可靠性和频谱效率。
-
-
-
-
-
-
-
-
-