一种网络诈骗易感人群筛选方法

    公开(公告)号:CN111737318B

    公开(公告)日:2024-06-11

    申请号:CN202010585668.2

    申请日:2020-06-24

    Abstract: 本发明提供一种网络诈骗易感人群筛选方法,包括:提取高危用户的社会属性数据;根据高危用户的社会属性进行分段,统计每个属性分段的访问诈骗网站人数;根据高危用户在各个属性分段的数量分布,为每个属性分段分配不同的权重,形成权重集合;计算所有高危用户的权重的加权平均值,取加权平均值最小的用户作为筛选阈值;使用权重集合与筛选阈值建立初始模型。由于容易受害的群体往往集中在部分人群,针对这些人群重点宣传,可以起到事半功倍的效果,因此通过本发明可以准确、迅速的对诈骗网站的访问数据分析筛选,挖掘出网络诈骗易受害人群,从而提高防网络诈骗宣传的效率,针对易被骗人群重点宣传,有效降低诈骗率,降低宣传成本。

    一种网络诈骗易感人群筛选方法

    公开(公告)号:CN111737318A

    公开(公告)日:2020-10-02

    申请号:CN202010585668.2

    申请日:2020-06-24

    Abstract: 本发明提供一种网络诈骗易感人群筛选方法,包括:提取高危用户的社会属性数据;根据高危用户的社会属性进行分段,统计每个属性分段的访问诈骗网站人数;根据高危用户在各个属性分段的数量分布,为每个属性分段分配不同的权重,形成权重集合;计算所有高危用户的权重的加权平均值,取加权平均值最小的用户作为筛选阈值;使用权重集合与筛选阈值建立初始模型。由于容易受害的群体往往集中在部分人群,针对这些人群重点宣传,可以起到事半功倍的效果,因此通过本发明可以准确、迅速的对诈骗网站的访问数据分析筛选,挖掘出网络诈骗易受害人群,从而提高防网络诈骗宣传的效率,针对易被骗人群重点宣传,有效降低诈骗率,降低宣传成本。

    一种判别对抗网络的恶意应用检测方法和系统

    公开(公告)号:CN113127872B

    公开(公告)日:2022-07-12

    申请号:CN202110411779.6

    申请日:2021-04-16

    Abstract: 本发明公开了一种判别对抗网络的恶意应用检测方法和系统,所述方法包括如下步骤:建立应用的API调用神经网络;建立应用的权限神经网络;建立应用的操作码序列神经网络;分别向上述三种神经网络输入对应的特征,获取分别输出的三种特征矢量;将三种输出的特征矢量输入到判别对抗网络中,输出应用的识别结果。述方法和系统通过建立判别对抗网络(DAN)架构对恶意应用进行识别,所述判别对抗网络(DAN)将传统的GAN中的生成器替换为鉴别器,所述判别对抗网络的其中一个鉴别器可以检测恶意软件,另一个鉴别器对混淆无感知,可以识别具有不同域的混淆和未混淆恶意应用,并消除了学习中混淆带来的偏差。

    一种判别对抗网络的恶意应用检测方法和系统

    公开(公告)号:CN113127872A

    公开(公告)日:2021-07-16

    申请号:CN202110411779.6

    申请日:2021-04-16

    Abstract: 本发明公开了一种判别对抗网络的恶意应用检测方法和系统,所述方法包括如下步骤:建立应用的API调用神经网络;建立应用的权限神经网络;建立应用的操作码序列神经网络;分别向上述三种神经网络输入对应的特征,获取分别输出的三种特征矢量;将三种输出的特征矢量输入到判别对抗网络中,输出应用的识别结果。述方法和系统通过建立判别对抗网络(DAN)架构对恶意应用进行识别,所述判别对抗网络(DAN)将传统的GAN中的生成器替换为鉴别器,所述判别对抗网络的其中一个鉴别器可以检测恶意软件,另一个鉴别器对混淆无感知,可以识别具有不同域的混淆和未混淆恶意应用,并消除了学习中混淆带来的偏差。

Patent Agency Ranking