-
公开(公告)号:CN104537393A
公开(公告)日:2015-04-22
申请号:CN201510002850.X
申请日:2015-01-04
Applicant: 大连理工大学
IPC: G06K9/66
CPC classification number: G06K9/00818 , G06K9/6256
Abstract: 本发明属于计算机应用技术领域机器学习理论及应用子领域,关注于智能交通技术中的交通标志识别问题。其特征是使用一种多分辨率卷积神经网络交通标志识别方法,用于解决使用卷积神经网络进行交通标志识别时速度较慢的问题,使用不同分辨率的二维图像作为输入,并行运算两个相同结构的卷积神经网络进行特征映射和提取,而后基于网络训练的权值阈值进行精确分类和识别。本发明通过使用两个具有不同分辨率分支的CNN代替了基本的CNN结构,高分辨图像输入可映射出全局和轮廓的特征,低分辨率的图像可映射出局部和细节特征,保证了识别的分辨率,提高了模型训练速度。
-
公开(公告)号:CN104850845B
公开(公告)日:2017-12-26
申请号:CN201510290648.1
申请日:2015-05-30
Applicant: 大连理工大学
Abstract: 本发明属于智能交通标志识别技术领域,涉及一种基于非对称卷积神经网络的交通标志识别方法,用以解决交通标志识别问题中识别速度较慢,且鲁棒性不强的问题。本发明的方法采用两个不同结构的卷积神经网络并行地进行特征映射和提取,最后将特征进行合并,再经过全连接层和最后的分类器,完成整个分类过程。两个不同结构的卷积神经网络分别采用了随机池化操作和maxout单元,确保了图像特征的多样性,提高了识别精度并加快了网络运算速度。本发明对传统卷积神经网络进行了结构上的改进,使用两个不同结构的卷积神经网络代替了传统的卷积神经网络结构,该方法确保了图像特征的多样性,提高了识别精度并加快了网络运算速度。
-
公开(公告)号:CN104537393B
公开(公告)日:2018-01-16
申请号:CN201510002850.X
申请日:2015-01-04
Applicant: 大连理工大学
IPC: G06K9/66
Abstract: 本发明属于计算机应用技术领域机器学习理论及应用子领域,关注于智能交通技术中的交通标志识别问题。其特征是使用一种多分辨率卷积神经网络交通标志识别方法,用于解决使用卷积神经网络进行交通标志识别时速度较慢的问题,使用不同分辨率的二维图像作为输入,并行运算两个相同结构的卷积神经网络进行特征映射和提取,而后基于网络训练的权值阈值进行精确分类和识别。本发明通过使用两个具有不同分辨率分支的CNN代替了基本的CNN结构,高分辨图像输入可映射出全局和轮廓的特征,低分辨率的图像可映射出局部和细节特征,保证了识别的分辨率,提高了模型训练速度。
-
公开(公告)号:CN104850845A
公开(公告)日:2015-08-19
申请号:CN201510290648.1
申请日:2015-05-30
Applicant: 大连理工大学
CPC classification number: G06K9/00818 , G06K9/6256
Abstract: 本发明属于智能交通标志识别技术领域,涉及一种基于非对称卷积神经网络的交通标志识别方法,用以解决交通标志识别问题中识别速度较慢,且鲁棒性不强的问题。本发明的方法采用两个不同结构的卷积神经网络并行地进行特征映射和提取,最后将特征进行合并,再经过全连接层和最后的分类器,完成整个分类过程。两个不同结构的卷积神经网络分别采用了随机池化操作和maxout单元,确保了图像特征的多样性,提高了识别精度并加快了网络运算速度。本发明对传统卷积神经网络进行了结构上的改进,使用两个不同结构的卷积神经网络代替了传统的卷积神经网络结构,该方法确保了图像特征的多样性,提高了识别精度并加快了网络运算速度。
-
-
-