一种大规模数据背景下的快速有效的图像检索方法

    公开(公告)号:CN106055576B

    公开(公告)日:2018-04-10

    申请号:CN201610340978.1

    申请日:2016-05-20

    Abstract: 本发明提供了一种大规模数据背景下的快速有效的图像检索方法,属于计算机视觉、统计学习、模式识别技术领域。首先采用在特定任务数据集下做过迁移学习的深层卷积神经网络提取图像的局部特征,然后进一步利用空间均值池化和协方差描述子对提取的图像局部特征进行建模。为了能够鲁棒的估计高维协方差描述子,本发明提出了改进的最大似然估计法。通过对空间均值池化模型和协方差描述子进行加权融合得到最终的图像表达。为了比较两幅图像的图像表达,提出了基于最大间隔子空间的低秩测度学习方法。一方面降低了图像表达的维度以提高图像匹配效率,另一方面可以依据特定任务数据集的先验信息提高图像匹配准确率。

    一种大规模数据背景下的快速有效的图像检索方法

    公开(公告)号:CN106055576A

    公开(公告)日:2016-10-26

    申请号:CN201610340978.1

    申请日:2016-05-20

    CPC classification number: G06F17/30256 G06N3/08

    Abstract: 本发明提供了一种大规模数据背景下的快速有效的图像检索方法,属于计算机视觉、统计学习、模式识别技术领域。首先采用在特定任务数据集下做过迁移学习的深层卷积神经网络提取图像的局部特征,然后进一步利用空间均值池化和协方差描述子对提取的图像局部特征进行建模。为了能够鲁棒的估计高维协方差描述子,本发明提出了改进的最大似然估计法。通过对空间均值池化模型和协方差描述子进行加权融合得到最终的图像表达。为了比较两幅图像的图像表达,提出了基于最大间隔子空间的低秩测度学习方法。一方面降低了图像表达的维度以提高图像匹配效率,另一方面可以依据特定任务数据集的先验信息提高图像匹配准确率。

Patent Agency Ranking