-
公开(公告)号:CN115145966A
公开(公告)日:2022-10-04
申请号:CN202211075909.4
申请日:2022-09-05
Applicant: 山东省计算中心(国家超级计算济南中心) , 北京威努特技术有限公司
IPC: G06F16/2455 , G06F16/23 , G06N20/00 , G06K9/62
Abstract: 本发明属于人工智能领域,提供了一种面向异构数据的对比联邦学习方法及系统,包括客户端利用当前轮次中当前次数局部更新的局部模型和上一次局部更新的历史局部模型的正余弦距离、当前轮次中当前次数局部更新的局部模型与当前全局模型之间的负余弦距离对当前局部模型进行优化,使得客户端当前轮次的局部模型靠近当前全局模型而远离上一轮次的局部模型,得到最新的局部模型;服务端获取多个客户端的最新的局部模型进行聚合,更新全局模型。本发明从模型相似度的角度建立异构环境下联邦学习的优化问题,使每个客户端都能够学习到接近全局模型表示,以最小化局部模型差异。
-
公开(公告)号:CN117196070B
公开(公告)日:2024-01-26
申请号:CN202311474649.2
申请日:2023-11-08
Applicant: 山东省计算中心(国家超级计算济南中心)
Abstract: 本发明属于异构数据下的联邦学习的技术领域,更具体地,涉及一种面向异构数据的双重联邦蒸馏学习方法及装置。所述方法包括全局知识蒸馏和局部知识蒸馏,全局知识蒸馏包括利用全局生成器生成全局伪数据,将全局伪数据输入局部模型和初始聚合模型,并根据模型输出结果对初始聚合模型微调,得到全局模型;局部知识蒸馏包括利用局部生成器生成局部伪数据,将局部伪数据输入局部模型和全局模型,并根据模型输出结果更新局部生成器,再利用更新后的局部生成器生成新的局部伪数据,利用新的局部伪数据更新局部模型。本发明保障数据异构环境下产
-
公开(公告)号:CN115442160B
公开(公告)日:2023-02-21
申请号:CN202211388174.0
申请日:2022-11-08
Applicant: 山东省计算中心(国家超级计算济南中心)
Abstract: 一种差分隐私保护下的网络化系统数据隐蔽攻击检测方法,属于信息安全的技术领域,所述检测方法,首先,对网络化系统进行建模并设计基于系统噪声参数的攻击检测机制;然后,根据已知系统信息,为攻击者设计最优数据隐蔽攻击策略;接着,在保障网络化系统敏感数据隐私的情形下,通过隐私噪声调度机制确定隐私噪声添加的时刻,并实现最优系统控制性能。基于以上设计,可在保护系统数据隐私性以及保障系统达到最优运行性能的基础上,对可能发生的数据隐蔽攻击进行有效检测。
-
公开(公告)号:CN115145966B
公开(公告)日:2022-11-11
申请号:CN202211075909.4
申请日:2022-09-05
Applicant: 山东省计算中心(国家超级计算济南中心) , 北京威努特技术有限公司
IPC: H04L67/125 , G06F16/2455 , G06F16/23 , G06N20/00 , G06K9/62
Abstract: 本发明属于人工智能领域,提供了一种面向异构数据的对比联邦学习方法及系统,包括客户端利用当前轮次中当前次数局部更新的局部模型和上一次局部更新的历史局部模型的正余弦距离、当前轮次中当前次数局部更新的局部模型与当前全局模型之间的负余弦距离对当前局部模型进行优化,使得客户端当前轮次的局部模型靠近当前全局模型而远离上一轮次的局部模型,得到最新的局部模型;服务端获取多个客户端的最新的局部模型进行聚合,更新全局模型。本发明从模型相似度的角度建立异构环境下联邦学习的优化问题,使每个客户端都能够学习到接近全局模型表示,以最小化局部模型差异。
-
公开(公告)号:CN117196070A
公开(公告)日:2023-12-08
申请号:CN202311474649.2
申请日:2023-11-08
Applicant: 山东省计算中心(国家超级计算济南中心)
Abstract: 本发明属于异构数据下的联邦学习的技术领域,更具体地,涉及一种面向异构数据的双重联邦蒸馏学习方法及装置。所述方法包括全局知识蒸馏和局部知识蒸馏,全局知识蒸馏包括利用全局生成器生成全局伪数据,将全局伪数据输入局部模型和初始聚合模型,并根据模型输出结果对初始聚合模型微调,得到全局模型;局部知识蒸馏包括利用局部生成器生成局部伪数据,将局部伪数据输入局部模型和全局模型,并根据模型输出结果更新局部生成器,再利用更新后的局部生成器生成新的局部伪数据,利用新的局部伪数据更新局部模型。本发明保障数据异构环境下产生客户漂移现象时联邦学习系统中服务端和客户端双边优化,实现全局模型和局部模型的稳定收敛及性能提升。
-
公开(公告)号:CN115442160A
公开(公告)日:2022-12-06
申请号:CN202211388174.0
申请日:2022-11-08
Applicant: 山东省计算中心(国家超级计算济南中心)
Abstract: 一种差分隐私保护下的网络化系统数据隐蔽攻击检测方法,属于信息安全的技术领域,所述检测方法,首先,对网络化系统进行建模并设计基于系统噪声参数的攻击检测机制;然后,根据已知系统信息,为攻击者设计最优数据隐蔽攻击策略;接着,在保障网络化系统敏感数据隐私的情形下,通过隐私噪声调度机制确定隐私噪声添加的时刻,并实现最优系统控制性能。基于以上设计,可在保护系统数据隐私性以及保障系统达到最优运行性能的基础上,对可能发生的数据隐蔽攻击进行有效检测。
-
-
-
-
-