基于双向GRU-条件随机场的非线性均衡方法

    公开(公告)号:CN114285715B

    公开(公告)日:2023-12-19

    申请号:CN202111558697.0

    申请日:2021-12-20

    Abstract: 本发明公开的基于双向GRU‑条件随机场的非线性均衡方法,属于光纤通信技术领域。本发明实现方法为:发送和采集M‑QAM信号序列,构建每个M‑QAM信号的特征序列,构建训练数据集;构建基于双向GRU‑条件随机场的非线性均衡模型;利用训练数据集对双向GRU‑条件随机场模型进行训练;使用训练好的双向GRU‑条件随机场模型对每个M‑QAM信号的特征序列进行标签序列的预测,输出得到每个M‑QAM信号的预测标签序列;将输出的预测标签序列的中间标签结果作为M‑QAM信号所对应的类别,通过M‑QAM星座符号解映射后,得到相对应二进制数据,实现高准确度的数据恢复,有效降低信号在长距离传输过程中受到的由于器件和光纤的非线性效应造成的影响,降低通信系统的误比特率,提升通信系统的传输性能。

    基于Wide&Deep-CNN的光纤非线性均衡方法

    公开(公告)号:CN116366165A

    公开(公告)日:2023-06-30

    申请号:CN202211537436.5

    申请日:2022-12-01

    Abstract: 本发明公开的基于Wide&Deep‑CNN的光纤非线性均衡方法,属于光纤通信技术领域。本发明实现方法为:构建每个M‑QAM信号的第一特征序列和第二特征图谱,构建训练数据集;构建基于Wide&Deep‑CNN模型的非线性均衡模型,第一特征序列作为Wide&Deep‑CNN模型中Wide网络子模型的输入特征序列,第二特征图谱作为Wide&Deep‑CNN模型中Deep‑CNN子模型的输入特征图谱;利用训练数据集对Wide&Deep‑CNN模型进行训练;将每个待非线性均衡的M‑QAM信号的特征输入到训练好的Wide&Deep‑CNN模型,输出得到每个M‑QAM信号的预测标签;将输出的预测标签结果作为M‑QAM信号所对应的类别,得到M‑QAM信号的非线性均衡结果,显著改善M‑QAM信号的质量,通过M‑QAM星座符号解映射,得到相对应二进制数据,实现高准确度的数据恢复,降低误比特率,提升相干光通信系统的传输性能。

Patent Agency Ranking