-
公开(公告)号:CN114382468B
公开(公告)日:2023-08-11
申请号:CN202210065532.8
申请日:2022-01-20
Applicant: 平顶山天安煤业股份有限公司 , 中国矿业大学 , 中国平煤神马控股集团有限公司
Abstract: 本发明公开了一种煤层瓦斯储集条件的保压核磁监测方法,采用的核磁探测及瓦斯抽采一体化装置,在形成的穿层钻孔后续进行瓦斯抽采的同时,还能进行核磁共振的数据监测,通过实时的数据监测能对瓦斯抽采情况进行协同控制;另外通过对穿层钻孔采用胶囊封孔器进行保压密封处理,并且该一体化装置能在封闭空间内移动及其具备的呈球体结构的三维磁线分布,通过射频设备向处于三维磁场范围内的介质发射射频脉冲,将介质中的质子由低能级跃迁到高能级,通过天线的接收数据,从而实现该封闭空间所处煤层周围的瓦斯含量及压力的快速无损、原位精准监测,并能获得钻孔周围煤层的孔隙结构数据,最终根据获得的数据确定煤层瓦斯储集条件评判指标。
-
公开(公告)号:CN112879079B
公开(公告)日:2023-03-21
申请号:CN202110383907.0
申请日:2021-04-09
Applicant: 平顶山天安煤业股份有限公司 , 中国矿业大学 , 中国平煤神马控股集团有限公司
Abstract: 本发明公开了一种突出煤层底抽巷全生命周期利用方法,包括:S1.结合煤层地质条件,确定底抽巷的空间层位布置;S2.于底抽巷向预掘煤巷区域打穿层钻孔进行水力卸压增透,然后联孔抽采瓦斯;S3.于底抽巷向预掘煤巷外侧布设穿层注浆钻孔进行区域加固;S4.工作面卸压区域瓦斯二次抽采;S5.煤矸分离及矸石回填底抽巷。解决了现有底抽巷开掘仅用于采前预抽的局限,以及煤矸堆积、废弃巷道空间浪费等环境问题,对底抽巷的整个生命周期进行设计分析,实现对底抽巷的有效管理和运用,同时将底抽巷的功能拓展到工作面卸压瓦斯二次抽采、承接矸石井下充填等方面,实现经济和环境效益双赢。
-
公开(公告)号:CN112879079A
公开(公告)日:2021-06-01
申请号:CN202110383907.0
申请日:2021-04-09
Applicant: 平顶山天安煤业股份有限公司 , 中国矿业大学 , 中国平煤神马能源化工集团有限责任公司
Abstract: 本发明公开了一种突出煤层底抽巷全生命周期利用方法,包括:S1.结合煤层地质条件,确定底抽巷的空间层位布置;S2.于底抽巷向预掘煤巷区域打穿层钻孔进行水力卸压增透,然后联孔抽采瓦斯;S3.于底抽巷向预掘煤巷外侧布设穿层注浆钻孔进行区域加固;S4.工作面卸压区域瓦斯二次抽采;S5.煤矸分离及矸石回填底抽巷。解决了现有底抽巷开掘仅用于采前预抽的局限,以及煤矸堆积、废弃巷道空间浪费等环境问题,对底抽巷的整个生命周期进行设计分析,实现对底抽巷的有效管理和运用,同时将底抽巷的功能拓展到工作面卸压瓦斯二次抽采、承接矸石井下充填等方面,实现经济和环境效益双赢。
-
公开(公告)号:CN114382468A
公开(公告)日:2022-04-22
申请号:CN202210065532.8
申请日:2022-01-20
Applicant: 平顶山天安煤业股份有限公司 , 中国矿业大学 , 中国平煤神马能源化工集团有限责任公司
Abstract: 本发明公开了一种煤层瓦斯储集条件的保压核磁监测方法,采用的核磁探测及瓦斯抽采一体化装置,在形成的穿层钻孔后续进行瓦斯抽采的同时,还能进行核磁共振的数据监测,通过实时的数据监测能对瓦斯抽采情况进行协同控制;另外通过对穿层钻孔采用胶囊封孔器进行保压密封处理,并且该一体化装置能在封闭空间内移动及其具备的呈球体结构的三维磁线分布,通过射频设备向处于三维磁场范围内的介质发射射频脉冲,将介质中的质子由低能级跃迁到高能级,通过天线的接收数据,从而实现该封闭空间所处煤层周围的瓦斯含量及压力的快速无损、原位精准监测,并能获得钻孔周围煤层的孔隙结构数据,最终根据获得的数据确定煤层瓦斯储集条件评判指标。
-
公开(公告)号:CN119554084A
公开(公告)日:2025-03-04
申请号:CN202411703502.0
申请日:2024-11-26
Applicant: 中国矿业大学
Abstract: 本发明公开了一种采空区煤自燃智能化监测及阻燃一体化系统及方法,气体采集装置用于采集采空区内不同位置的气体,并将不同位置的气体依次输送至煤自燃检测系统;煤自燃检测系统中的气体检测模块能检测流经气体的数据,并将检测数据反馈给煤自燃判定模块进行分析处理后,得出采空区内各个位置是否发生煤自燃情况以及划分采空区自燃三带的分布情况,智能控制系统根据分析结果若存在煤自燃情况,则使该位置周围的多个注浆喷口打开并启动注浆泵,向该位置注入阻燃浆液;本发明能够智能、精准、实时监测自燃三带分布和煤自燃发生情况,并根据煤自燃发生情况,实现对采空区煤层自燃的精确定位及快速自动化阻燃过程,以保障煤矿开采的安全性。
-
公开(公告)号:CN117249737A
公开(公告)日:2023-12-19
申请号:CN202311312112.6
申请日:2023-10-11
Applicant: 中国矿业大学
Abstract: 本发明公开了一种静态爆破扩孔送药及封孔装置及其工作方法,包括封孔装置、扩孔装置和送药装置;其中扩孔装置用于对上向钻孔扩孔,并形成环形切槽;送药装置用于送药及对钻孔的预封孔,送药装置先随着扩孔装置进入钻孔内,在扩孔装置的扩孔工作完成后,送药装置被移动至扩孔装置扩孔时所处的位置,并通过两个支撑杆的扩展进入环形切槽内,从而使送药装置固定在钻孔中;然后通过送药铲将静态破碎药卷穿过送药装置推至钻孔内,最后将封孔装置与送药装置连接,使封孔装置对钻孔孔口进行密封,形成双重密封作用,钻孔内的静态破碎药卷通过自身的化学反应产生持续膨胀应力与热应力,最终实现煤层坚硬顶板的高效弱化致裂。
-
公开(公告)号:CN115163000B
公开(公告)日:2023-10-27
申请号:CN202210829420.5
申请日:2022-07-15
Applicant: 中国矿业大学
Abstract: 本发明公开了一种基于压风动力的打钻防喷孔装置及方法,在打钻过程中兼具快速排渣、清理粉尘及瓦斯快速抽采的功能,通过防喷主体中甲烷浓度检测仪监测瓦斯浓度,从而能对钻孔内是否发生喷孔现象做出识别和判断,进而向工作人员发出声光警报,接着工作人员能通过阀门启停按钮组实现气动蝶阀一和气动蝶阀二的快速开启和关闭,通过这种方式能使防喷主体从除尘及排渣模式快速切换至瓦斯抽采模式,在短时间内进行瓦斯的密闭抽采,解决了传统防喷装置机械式手动阀门启停过晚而造成的瓦斯抽采不及时,进而大量涌入采掘工作面而造成瓦斯超限的难题。此外,通过两个气动蝶阀的相互切换控制,关闭除尘管路阀门对整个防喷装置进行密封,提高了瓦斯抽采浓度。
-
公开(公告)号:CN116696451A
公开(公告)日:2023-09-05
申请号:CN202310729241.9
申请日:2023-06-19
Applicant: 中国矿业大学 , 江苏铎安科技有限责任公司
Inventor: 翟成 , 郑仰峰 , 余旭 , 杨威 , 张海宾 , 徐吉钊 , 刘厅 , 孙勇 , 丛钰洲 , 唐伟 , 李宇杰 , 朱薪宇 , 黄婷 , 王宇 , 陈爱坤 , 徐鹤翔 , 吴西卓 , 刘晓琴 , 魏星宇 , 黄涛
IPC: E21F7/00 , E21F17/103 , E21F17/12 , E21F17/18
Abstract: 本发明公开了一种高瓦斯煤层封闭式工作面煤气智能开采方法,将高瓦斯采煤工作面及采空区全封闭形成密封空间,进而取消通风系统及瓦斯抽采钻孔,由于无外界空气进入,并通过抽取使其内部氧气降低至接近零,进而使采煤工作面在后续采煤过程中处于隔绝氧气的状态,因此从根本上消除了煤炭自燃以及瓦斯煤尘爆炸的风险,从而大大加快了采掘接替速度,并减少了矿井的施工成本。另外在密封空间内进行后续采煤时,解吸的瓦斯直接排放至采煤工作面及密封空间内,此时通过瓦斯抽采泵站抽采瓦斯,大大提高了瓦斯利用率;最终实现对整个高瓦斯煤层的瓦斯抽采,且在抽采的同时能进行煤炭开采,不仅保证瓦斯抽采效率,还保障了煤炭开采量。
-
公开(公告)号:CN113359200B
公开(公告)日:2023-06-02
申请号:CN202110710114.5
申请日:2021-06-25
Applicant: 中国矿业大学
Abstract: 本发明公开了一种基于核磁传感器的核废料掩埋场水体监测系统及方法,适用于核废料掩埋场使用。其包括核磁共振测量系统,井下控制中心与地面综合管控中心。在地面综合管控中心远程操控核磁共振测量系统,对核废料掩埋场不同位置处的水分布情况进行实时监测,通过井下控制中心汇总所测数据,再通过光纤传输至地面综合管控中心,对数据进行分析与处理,根据结果判断是否有水侵入,并对异常情况做出预警,制定应对措施,保护核废料掩埋场的持久性安全。该监测系统具有简单、方便和智能的特点。
-
公开(公告)号:CN114719455B
公开(公告)日:2023-04-07
申请号:CN202210491082.9
申请日:2022-05-07
Applicant: 中国矿业大学
Abstract: 本发明公开了一种基于不同相态CO2的定向层位式地热强化开采方法,从地面向干热岩储层钻设竖井,在竖井同一侧依次钻设第一水平钻井、第二水平钻井和第三水平钻井,并在第二和第三水平钻井内均布设定向孔洞,其在后续CO2流体相变致裂时起到导向作用,接着布设多相态CO2地热开采系统。这种单井“注入‑提热”过程可有效提高地热开采效率;利用液态CO2注入地热层时受热后相变膨胀致裂增加体积改造范围,此时CO2气体变成处于超临界状态的CO2流体,使超临界状态的CO2流体与地热层换热,最后超临界状态的CO2流体进入换热器内进行换热降温,使其提取的热量用于发电装置进行发电,从而有效保证地热资源开采后的换热效率,提高地热资源的整体开采效率。
-
-
-
-
-
-
-
-
-