-
公开(公告)号:CN115745597A
公开(公告)日:2023-03-07
申请号:CN202211552999.1
申请日:2022-12-06
Applicant: 广东华中科技大学工业技术研究院 , 华中师范大学深圳研究院
IPC: C04B35/468 , C04B35/26 , C04B35/622 , C04B35/645
Abstract: 本发明公开一种利用冷烧结技术制备铁酸铋‑钛酸钡压电织构陶瓷的方法,包括以下步骤:合成高径厚比的BaTiO3片状模板;煅烧制备(1‑x)BaFeO3‑xBaTiO3预烧粉,再将预烧粉球磨得到陶瓷基体粉;将陶瓷基体粉与粘结剂、增塑剂、除泡剂、分散剂、无水乙醇以及烧结助剂Ba(OH)2﹒8H2O混合,进行第一次球磨,再向混合浆料中加入BaTiO3片状模板,第二次球磨得到流延浆料;将流延浆料流延得到流延膜;将流延膜裁切为圆片,再进行叠层、热压成型得到陶瓷生坯;将陶瓷生坯进行排胶,然后冷等静压;将冷等静压后的陶瓷生坯进行冷烧结,得到织构陶瓷。本发明能有效降低陶瓷的烧结温度,提高陶瓷的织构度及压电性能。
-
公开(公告)号:CN117247697A
公开(公告)日:2023-12-19
申请号:CN202311265237.8
申请日:2023-09-25
Applicant: 广东华中科技大学工业技术研究院 , 杭州泰利斯医疗科技有限公司
IPC: C09D11/38
Abstract: 本发明公开一种电场辅助分散喷墨3D打印用氧化锆墨水及制备方法,氧化锆墨水的组分包括30%~60%氧化锆、35%~65%溶剂、0.01~2.0%分散剂、0~0.2%防沉剂、0.01~2.0%表面活性剂、0.01~2.0%粘结剂及pH调节剂。本发明所制备的氧化锆喷墨3D打印墨水固含量在30wt%‑60wt%之间,室温下粘度小于20mPa·s,表面张力小于36mN/m,易通过3um尼龙过滤器,上机长时间打印过程中不易堵塞喷嘴且固含量基本保持不变,打印样品烧结后抗弯强度达1000MPa左右;该氧化锆陶瓷墨水解决了喷嘴堵塞问题,喷墨3D打印的氧化锆样品烧结强度符合工业生产需要。
-
公开(公告)号:CN116354726A
公开(公告)日:2023-06-30
申请号:CN202310274431.6
申请日:2023-03-20
Applicant: 广东华中科技大学工业技术研究院
IPC: C04B35/563 , C04B35/622 , C04B35/645
Abstract: 本发明公开一种超高硬度碳化硼陶瓷材料及其制备方法,该超高硬度碳化硼陶瓷材料的原料成分为B4C粉末和Ti6Al4V粉末,B4C粉末的体积百分比含量为95~99.5%,Ti6Al4V粉末的体积百分比含量为0.5~5%。其制备方法包括以下步骤:A、粉末混合:将B4C粉末和Ti6Al4V粉末按比例进行行星球磨混合,球磨介质为氧化锆球和无水乙醇;B、放电等离子烧结:将球磨后的混合粉体放入石墨模具中,再将石墨模具放入放电等离子烧结腔体中进行烧结即得到超高硬度碳化硼陶瓷材料,待冷却后将超高硬度碳化硼陶瓷材料从石墨模具中取出。本发明克服了现有对于碳化硼陶瓷的致密化问题,成功制备出超高硬度碳化硼陶瓷材料。
-
公开(公告)号:CN111704391B
公开(公告)日:2022-02-22
申请号:CN202010609978.3
申请日:2020-06-29
Applicant: 广东华中科技大学工业技术研究院
Abstract: 本发明涉及半导体加工领域,尤其涉及一种金刚石陶瓷复合划片刀及其制备方法,原料包括树脂、金刚石、无机填料和造孔剂,经过混料、填料、热压、二次硬化等步骤制作,并使用其特制模具制成,模具包括两个压型模、设置在两个压型模中间的外型模及设置在压型模下端的内型模;内型模包括底板和均匀固定在底板上端面的内型限位柱;压型模包括上和均匀固定在上板端面的压型管,内型限位柱外径与压型管内径相匹配;外型模包括中板和均匀开设在中板上的外型孔,压型管的外径与外型孔内径相匹配。本发明可制备一种具有超高形位精度,切缝表面质量,机械性能和寿命的超薄金刚石划片。
-
公开(公告)号:CN116813334B
公开(公告)日:2025-04-15
申请号:CN202310170537.1
申请日:2023-02-27
Applicant: 广东华中科技大学工业技术研究院 , 华中科技大学温州先进制造技术研究院
Abstract: 本发明公开了多孔无铅压电陶瓷元件、空气耦合多孔无铅超声换能器及其制备方法,属于超声换能器技术领域。所述元件中孔隙均匀分布,孔隙率为55%‑75%,孔结构为Gyroid;其制备方法包括:无铅陶瓷粉经光固化3D打印成多孔压电陶瓷元件。本发明公开的空气耦合多孔无铅超声换能器包含多孔压电陶瓷元件。本发明提供的多孔无铅压电陶瓷元件,通过孔隙的设计,使得声阻抗降低到5.95MRayl,利于与空气实现声阻抗。本发明提供的空气耦合多孔无铅超声换能器,检测灵敏度达到‑27dB以下。
-
公开(公告)号:CN116813334A
公开(公告)日:2023-09-29
申请号:CN202310170537.1
申请日:2023-02-27
Applicant: 广东华中科技大学工业技术研究院 , 华中科技大学温州先进制造技术研究院
Abstract: 本发明公开了多孔无铅压电陶瓷元件、空气耦合多孔无铅超声换能器及其制备方法,属于超声换能器技术领域。所述元件中孔隙均匀分布,孔隙率为55%‑75%,孔结构为Gyroid;其制备方法包括:无铅陶瓷粉经光固化3D打印成多孔压电陶瓷元件。本发明公开的空气耦合多孔无铅超声换能器包含多孔压电陶瓷元件。本发明提供的多孔无铅压电陶瓷元件,通过孔隙的设计,使得声阻抗降低到5.95MRayl,利于与空气实现声阻抗。本发明提供的空气耦合多孔无铅超声换能器,检测灵敏度达到‑27dB以下。
-
公开(公告)号:CN116354727A
公开(公告)日:2023-06-30
申请号:CN202310276172.0
申请日:2023-03-20
Applicant: 广东华中科技大学工业技术研究院
IPC: C04B35/563 , C04B35/622 , C04B35/645
Abstract: 本发明公开一种超高硬度和高韧性的碳化硼陶瓷材料及其制备方法,其原料成分为B4C粉末和Si粉末,其中,B4C粉末的体积百分比含量为95~99.5%,Si粉末的体积百分比含量为0.5~5%。其制备方法包括以下步骤:A、粉末混合:将B4C粉末和Si粉末按比例进行行星球磨混合,球磨介质为氧化锆球和无水乙醇;B、放电等离子烧结:将球磨后的混合粉体放入石墨模具中,再将石墨模具放入放电等离子烧结腔体中进行烧结即得到超高硬度和高韧性的碳化硼陶瓷材料,待冷却后将超高硬度和高韧性的碳化硼陶瓷材料从石墨模具中取出。本发明克服了现有对于碳化硼陶瓷的致密化和韧性问题,成功制备出兼具超高硬度和高韧性的碳化硼陶瓷材料。
-
公开(公告)号:CN116354726B
公开(公告)日:2025-01-24
申请号:CN202310274431.6
申请日:2023-03-20
Applicant: 广东华中科技大学工业技术研究院
IPC: C04B35/563 , C04B35/622 , C04B35/645
Abstract: 本发明公开一种超高硬度碳化硼陶瓷材料,该超高硬度碳化硼陶瓷材料的原料成分为B4C粉末和Ti6Al4V粉末,B4C粉末的体积百分比含量为95~99.5%,Ti6Al4V粉末的体积百分比含量为0.5~5%。其制备方法包括以下步骤:A、粉末混合:将B4C粉末和Ti6Al4V粉末按比例进行行星球磨混合,球磨介质为氧化锆球和无水乙醇;B、放电等离子烧结:将球磨后的混合粉体放入石墨模具中,再将石墨模具放入放电等离子烧结腔体中进行烧结即得到超高硬度碳化硼陶瓷材料,待冷却后将超高硬度碳化硼陶瓷材料从石墨模具中取出。本发明克服了现有对于碳化硼陶瓷的致密化问题,成功制备出超高硬度碳化硼陶瓷材料。
-
公开(公告)号:CN111792931B
公开(公告)日:2022-06-24
申请号:CN202010672862.4
申请日:2020-07-14
Applicant: 广东华中科技大学工业技术研究院
IPC: C04B35/475 , C04B35/622 , H01G4/12
Abstract: 本发明公开一种复合陶瓷材料及其制备方法,该复合陶瓷材料由0.5(Bi0.5Na0.5)TiO3‑0.5(Sr0.7Bi0.2)TiO3粉体和氮化硼颗粒按照化学式0.5(Bi0.5Na0.5)TiO3‑0.5(Sr0.7Bi0.2)TiO3/BN所制成,所述0.5(Bi0.5Na0.5)TiO3‑0.5(Sr0.7Bi0.2)TiO3粉体是由Bi2O3、Na2CO3、SrCO3、TiO2根据化学式0.5(Bi0.5Na0.5)TiO3‑0.5(Sr0.7Bi0.2)TiO3进行配料后混合而成。本发明所制成的复合陶瓷材料兼具高储能密度和高储能效率,可用于制造大功率介电储能器件。
-
公开(公告)号:CN119551996A
公开(公告)日:2025-03-04
申请号:CN202411456420.0
申请日:2024-10-17
Applicant: 广东华中科技大学工业技术研究院 , 华中科技大学
IPC: C04B35/80 , C04B35/48 , C04B35/622 , C04B35/63
Abstract: 本发明提供了一种氧化锆材料及其制备方法和应用,属于陶瓷材料技术领域。本发明加入氧化铝晶须,利用氧化铝晶须对裂纹的偏转作用,氧化铝晶须会改变裂纹的扩展方向,提高裂纹扩展能量,有效抑制裂纹扩展,从而提高韧性;加入分散剂并控制分散剂的种类,特定种类的分散剂可以将氧化铝晶须和氧化锆粉体均匀包裹,减少团聚,提高均匀性,充分发挥晶须的裂纹偏转作用;将悬浊液进行超声分散可以在不破坏氧化铝晶须结构的情况下将氧化铝晶须均匀的分散在氧化锆粉体基体中,充分发挥氧化铝晶须的裂纹偏转作用;采用放电等离子烧结可以在烧结过程中提高材料致密度、减少晶粒尺寸,提高韧性,并极大缩短制备时间。
-
-
-
-
-
-
-
-
-