-
公开(公告)号:CN115083545A
公开(公告)日:2022-09-20
申请号:CN202210761911.0
申请日:2022-06-29
Applicant: 抚顺新钢铁有限责任公司 , 东北大学
Abstract: 本发明公开了使用硼铁矿精粉、钛铁粉、碱金属粉的烧结优化配矿方法,涉及烧结优化配矿技术领域,包括:在硼铁矿精粉、钛铁粉、碱金属粉的配矿参数范围内设定硼铁矿精粉、钛铁粉、碱金属粉的配比;判断烧结混匀矿基础特性是否符合基础特性约束条件以及烧结矿的化学成分是否符合化学成分约束条件;如不符合,返回重新设定硼铁矿精粉、钛铁粉、碱金属粉的配比的步骤;如符合,将当前硼铁矿精粉、钛铁粉、碱金属粉的配比作为优化配矿的配比。本发明中通过迭代计算得到硼铁矿精粉、钛铁粉、碱金属粉的最优配比,实现了高效使用硼铁矿精粉、钛铁粉、碱金属粉,在满足烧结生产要求的基础上,极大地降低了炼铁生产成本。
-
公开(公告)号:CN115271365A
公开(公告)日:2022-11-01
申请号:CN202210764971.8
申请日:2022-06-29
Applicant: 抚顺新钢铁有限责任公司 , 东北大学
Abstract: 本发明提供了一种铁矿石冶金性价比在线评价方法及系统,涉及冶金技术领域,包括:建立铁矿石冶金性价比评估模型;该模型中,以铁矿石化学成分、制粒性能和烧结基础特性作为输入,以铁矿石的性价比为输出;性价比为铁矿石化学成分、制粒性能和烧结基础特性数据进行量纲标准化之后的加权和;获取待评价的铁矿石数据;分析铁矿石的化学成分;确定铁矿石的制粒性能;获取铁矿石的烧结基础特性;将铁矿石的化学成分、粒度组成和烧结基础特性输入铁矿石冶金性价比评估模型,得到铁矿石的性价比。本发明以铁矿石化学成分、制粒性能、烧结基础特性等多维度在线评估铁矿粉冶金性价比,对铁矿石冶金性价比的评价更客观、更高效、更准确。
-
公开(公告)号:CN115206452A
公开(公告)日:2022-10-18
申请号:CN202210761913.X
申请日:2022-06-29
Applicant: 抚顺新钢铁有限责任公司 , 东北大学
Abstract: 本申请提供了一种在线实时预测高炉渣系粘度的方法,涉及高炉渣粘度预测技术领域,包括:获取高炉冶炼炉渣成分;利用高炉冶炼炉渣成分和响应曲面法确定单因素优化区间;基于各个因素的单因素优化区间确定高炉渣系粘度实验方案,并基于高炉渣系粘度实验方案进行高炉渣系粘度实验,得到不同温度条件下的高炉渣系粘度;基于得到的不同温度条件下的高炉渣系粘度数据和响应曲面因素交互作用进行多元线性回归,建立连续变量曲面模型;基于显著性系数对连续变量曲面模型进行优化,得到不同温度条件下渣系粘度预测模型;根据建立的不同温度条件下渣系粘度预测模型,预测高炉渣系粘度。该方法能够达到提前预测高炉渣粘度和实时显示高炉渣粘度的目的。
-
公开(公告)号:CN115094233A
公开(公告)日:2022-09-23
申请号:CN202210590269.4
申请日:2022-05-26
Applicant: 抚顺新钢铁有限责任公司
Abstract: 本发明公开了一种塞拉利昂铁矿全粒级高效利用的方法,属于冶金工程技术领域。主要包括:采用悬浮式筛网技术将塞拉利昂铁矿筛分,筛分后的塞拉利昂铁矿石分为三个粒级;大粒级塞拉利昂铁矿作为烧结过程中的铺底料,小粒级塞拉利昂铁矿与烧结混合料制粒,中粒级塞拉利昂铁矿镶嵌在制粒完成后的烧结混合料中;进行布料、点火、抽风烧结,利用烧结过程中产生的高温气流对大粒级和中粒级塞拉利昂铁矿进行高温焙烧,得到烧结矿和处理后的块矿。本发明能够避免使用成品烧结矿铺底料进行烧结,显著提高烧结生产效率、降低烧结生产成本、改善烧结矿质量,同时实现塞拉利昂铁矿全粒级的高效利用。
-
公开(公告)号:CN115094233B
公开(公告)日:2023-12-15
申请号:CN202210590269.4
申请日:2022-05-26
Applicant: 抚顺新钢铁有限责任公司
Abstract: 本发明公开了一种塞拉利昂铁矿全粒级高效利用的方法,属于冶金工程技术领域。主要包括:采用悬浮式筛网技术将塞拉利昂铁矿筛分,筛分后的塞拉利昂铁矿石分为三个粒级;大粒级塞拉利昂铁矿作为烧结过程中的铺底料,小粒级塞拉利昂铁矿与烧结混合料制粒,中粒级塞拉利昂铁矿镶嵌在制粒完成后的烧结混合料中;进行布料、点火、抽风烧结,利用烧结过程中产生的高温气流对大粒级和中粒级塞拉利昂铁矿进行高温焙烧,得到烧结矿和处理后的块矿。本发明能够避免使用成品烧结矿铺底料进行烧结,显著提高烧结生产效率、降低烧结生产成本、改善烧结矿质量,同时实现塞拉利昂铁矿全粒级的高效利用。
-
公开(公告)号:CN119989752A
公开(公告)日:2025-05-13
申请号:CN202510467385.0
申请日:2025-04-15
Applicant: 东北大学
IPC: G06F30/20 , G16C20/10 , G16C20/20 , G01N25/04 , G06F119/08 , G06F119/14
Abstract: 本发明提供一种烧结矿软熔滴落性能自适应管理方法、装置及设备,涉及软熔滴落性能管理技术领域,采集当前时刻烧结原料成分、当前时刻烧结原料配比和当前时刻烧结工艺参数,并计算当前时刻烧结矿理论成分;计算当前时刻烧结矿理论成分对应的当前时刻烧结矿软熔滴落温度理论值,并输入至准确预测模型,输出当前时刻烧结矿软熔滴落温度实际值;确定当前时刻烧结矿软熔滴落温度理论值和当前时刻烧结工艺参数对当前时刻烧结矿软熔滴落温度实际值的量化影响,调整当前时刻烧结工艺参数,实现对烧结矿软熔滴落温度的优化,与单纯的理论实验方式相比,通过与烧结工艺参数的结合,得到的当前时刻烧结矿软熔滴落温度实际值更加准确。
-
公开(公告)号:CN119517222B
公开(公告)日:2025-04-01
申请号:CN202510092099.0
申请日:2025-01-21
Applicant: 东北大学
Abstract: 本发明提供一种烧结原料化验数据与原料配比实时修正方法,属于电子数据处理技术领域,包括:获取多个历史指定时间周期内的历史原料化验数据、历史烧结过程数据以及历史成品数据,确定多个烧结矿成分目标;确定每个烧结矿成分目标的重要参数向量以及贡献算法;构建每个烧结矿成分目标的预测模型;确定每个烧结矿成分目标的影响参数向量;确定当前化验修正数据;获取多个历史化验修正数据,基于当前化验修正数据以及多个历史化验修正数据确定反馈值,并生成修正报告。可以提升数据质量和分析优化的科学性,确保了预测结果的科学性和可靠性,实现理论与实际闭环反馈的动态调整以及自动化修正、优化,实现质量控制管理的前置化和智能化。
-
公开(公告)号:CN119167040B
公开(公告)日:2025-03-21
申请号:CN202411666652.9
申请日:2024-11-21
Applicant: 东北大学
IPC: G06F18/20 , G06F18/241 , G06F16/2458 , G06F16/28
Abstract: 本说明书实施例涉及冶金技术领域,公开了一种烧结操作参数分析方法及装置,包括:基于初始烧结数据确定初始烧结参数;获取初始烧结参数的设定值,以及获取初始烧结参数的当前值,将当前值与设定值进行对比确定数值关系;基于数值关系进行分类确定至少两种操作参数数据;基于操作参数数据进行规律分析,确定操作参数分析结果。基于数值关系进行分类确定至少两种操作参数数据;基于操作参数数据进行规律分析,确定操作参数分析结果,可以实现以烧结过程实时动态参数为核心,采用大数据技术对烧结数据进行实时处理与快速分析,处理速度快,分析结果即时性强。
-
公开(公告)号:CN119514898A
公开(公告)日:2025-02-25
申请号:CN202510092107.1
申请日:2025-01-21
Applicant: 东北大学
IPC: G06Q10/063 , G06Q50/04
Abstract: 本发明提供一种基于大数据的高炉炉渣碱度智能调整方法,属于智能制造技术领域,其方法包括收集高炉历史生产数据,根据所述历史生产数据确定生产关键参数,生成高炉炉渣碱度的理论计算模型;结合工艺原则确定炉渣碱度相关目标参数,并对相关目标参数进行筛选,得出强关联参数,构建预测模型;基于预测结果对高炉渣铁进行状态评估,得出状态评估结果,根据状态评估结果确定炉渣碱度的调整方向和调整步长;基于理论计算模型和当前入炉炉料数据,结合炉渣碱度的调整方向和调整步长确定物料调整量,提前一个冶炼周期对炉渣碱度进行智能调整,实现高效、精准的炉渣碱度控制,减少人工干预,优化操作流程,保持碱度在最佳范围,减少不合格率。
-
公开(公告)号:CN119494395A
公开(公告)日:2025-02-21
申请号:CN202510083692.9
申请日:2025-01-20
Applicant: 东北大学
IPC: G06N5/022 , G06F16/36 , G06F16/334 , G06F16/35
Abstract: 本发明提供一种烧结动态知识图谱构建方法,涉及知识图谱技术领域,包括:采集实时烧结过程中的全链条数据,并进行参数分类,得到烧结目标参数及烧结过程参数;基于预设数据分析方法进行趋势性关系分析,从而建立烧结趋势影响知识图谱;基于目标配矿周期对烧结过程参数进行参数分类,并匹配对应机器学习算法,构建烧结目标参数预测模型;获取与实时配矿结构吻合度最高的第一历史数据点对应的烧结趋势影响知识图谱,同时基于烧结目标参数预测模型获取与当前生产状态吻合度最高的第二历史数据点,得到烧结量化影响知识图谱,确定实时配矿结构对应的烧结趋势及量化影响知识图谱结果。能够实现机理数据的融合,提高系统处理效率及精准度。
-
-
-
-
-
-
-
-
-