基于神经网络修改高校教务安排的方法、装置、设备及介质

    公开(公告)号:CN110458737B

    公开(公告)日:2023-09-26

    申请号:CN201910766856.2

    申请日:2019-08-20

    Applicant: 暨南大学

    Abstract: 本发明公开基于神经网络修改高校教务安排的方法、装置、设备及介质,该方法包括:根据用户上传的教务安排约束条件生成教务安排误差计算公式;根据教务安排约束条件和/或根据教务安排误差计算公式计算出的教务安排表的误差训练CPPN神经网络;利用CPPN神经网络计算出教务安排表,并通过教务安排误差计算公式计算出教务安排表的误差;在误差不大于误差阈值的情况下,获取该误差对应的教务安排表。本发明的方法不再需要繁琐的修改过程,让教职工和教务处能够很大程度上地节省修改方案的流程,快速完成排课排考的建议提交和修改过程,提高教务处的办事效率。

    基于贪婪算法的排考方法、装置、设备及介质

    公开(公告)号:CN110033239A

    公开(公告)日:2019-07-19

    申请号:CN201910301784.4

    申请日:2019-04-16

    Applicant: 暨南大学

    Abstract: 本发明公开基于贪婪算法的排考方法、装置、设备及介质,该排考方法包括:根据获取的高校教务系统中的考试任务集之教室信息集确定每一待排考的考试任务所需监考教师的总人数;利用贪婪算法,对从高校教务系统中获取的监考教师信息集中的所有监考教师逐个遍历并选出依次满足贪婪规则的监考教师,贪婪规则依次为:选取的监考教师的排考中不包含当前考试任务、与当前考试任务不冲突、监考教师的选取满足教师群体选择规律、选取的监考教师排考任务数最少;监考教师信息集包括监考教师姓名和教师群体编号;对每一考试任务分配匹配人数的选出的监考教师。本发明能解决现有中通过手工排考导致的人力/物力/资源浪费严重、执行环节间运作不协调问题。

    基于资金流预测收益率的预测方法、装置、设备及介质

    公开(公告)号:CN109086954B

    公开(公告)日:2022-01-25

    申请号:CN201811322112.3

    申请日:2018-11-08

    Applicant: 暨南大学

    Abstract: 本发明公开基于资金流预测收益率的预测方法、装置、设备及介质,该预测方法包括:获取采样的宏观资金流变量和上证指数收益率的月度数据序列,宏观资金流变量包括货币供应量和银行隔夜拆借利率;对月度数据序列进行单位根检验,确定单位根检验后的月度数据序列的单位根特性是否满足多变量协整检验的宽限条件;单位根特性为月度数据序列为Ni阶单整序列,Ni≥0;在单位根特性满足多变量协整检验的宽限条件的情况下,利用Johansen极大似然估计法确定宏观资金流变量月度数据序列与上证指数收益率月度数据序列的协整关系;根据基于协整关系建立的VECM模型对上证指数收益率进行预测。本发明的预测方法填补现有中尚缺少宏观资金流指标对中国股票指数进行预测的空白。

    基于资金流预测收益率的预测方法、装置、设备及介质

    公开(公告)号:CN109086954A

    公开(公告)日:2018-12-25

    申请号:CN201811322112.3

    申请日:2018-11-08

    Applicant: 暨南大学

    Abstract: 本发明公开基于资金流预测收益率的预测方法、装置、设备及介质,该预测方法包括:获取采样的宏观资金流变量和上证指数收益率的月度数据序列,宏观资金流变量包括货币供应量和银行隔夜拆借利率;对月度数据序列进行单位根检验,确定单位根检验后的月度数据序列的单位根特性是否满足多变量协整检验的宽限条件;单位根特性为月度数据序列为Ni阶单整序列,Ni≥0;在单位根特性满足多变量协整检验的宽限条件的情况下,利用Johansen极大似然估计法确定宏观资金流变量月度数据序列与上证指数收益率月度数据序列的协整关系;根据基于协整关系建立的VECM模型对上证指数收益率进行预测。本发明的预测方法填补现有中尚缺少宏观资金流指标对中国股票指数进行预测的空白。

    基于神经网络修改高校教务安排的方法、装置、设备及介质

    公开(公告)号:CN110458737A

    公开(公告)日:2019-11-15

    申请号:CN201910766856.2

    申请日:2019-08-20

    Applicant: 暨南大学

    Abstract: 本发明公开基于神经网络修改高校教务安排的方法、装置、设备及介质,该方法包括:根据用户上传的教务安排约束条件生成教务安排误差计算公式;根据教务安排约束条件和/或根据教务安排误差计算公式计算出的教务安排表的误差训练CPPN神经网络;利用CPPN神经网络计算出教务安排表,并通过教务安排误差计算公式计算出教务安排表的误差;在误差不大于误差阈值的情况下,获取该误差对应的教务安排表。本发明的方法不再需要繁琐的修改过程,让教职工和教务处能够很大程度上地节省修改方案的流程,快速完成排课排考的建议提交和修改过程,提高教务处的办事效率。

    基于贪婪算法的排考方法、装置、设备及介质

    公开(公告)号:CN110033239B

    公开(公告)日:2022-12-23

    申请号:CN201910301784.4

    申请日:2019-04-16

    Applicant: 暨南大学

    Abstract: 本发明公开基于贪婪算法的排考方法、装置、设备及介质,该排考方法包括:根据获取的高校教务系统中的考试任务集之教室信息集确定每一待排考的考试任务所需监考教师的总人数;利用贪婪算法,对从高校教务系统中获取的监考教师信息集中的所有监考教师逐个遍历并选出依次满足贪婪规则的监考教师,贪婪规则依次为:选取的监考教师的排考中不包含当前考试任务、与当前考试任务不冲突、监考教师的选取满足教师群体选择规律、选取的监考教师排考任务数最少;监考教师信息集包括监考教师姓名和教师群体编号;对每一考试任务分配匹配人数的选出的监考教师。本发明能解决现有中通过手工排考导致的人力/物力/资源浪费严重、执行环节间运作不协调问题。

    基于互联网修改高校考务排考的方法、装置、设备及介质

    公开(公告)号:CN110245917A

    公开(公告)日:2019-09-17

    申请号:CN201910514250.X

    申请日:2019-06-14

    Applicant: 暨南大学

    Abstract: 本发明公开基于互联网修改高校考务排考的方法、装置、设备及介质,该方法包括:网络服务端接收一个或多个UE端输入的修改指令和获取输入修改指令的教职工的修改权限值,所述修改指令是指排除为输入修改指令的教职工在特定时间内安排监考任务的指令,所述修改指令包括当前输入的修改指令和网络服务端存储的修改指令列表中的修改指令;在所述的修改权限值大于权限阈值M的情况下,所述网络服务端根据所述的修改指令对存储的初始排考安排表或已排考安排表进行重排;所述网络服务端将重排成功的排考安排表进行存储及显示和/或通过互联网将排考安排表发送至UE端显示。

Patent Agency Ranking