多倍频程微波传输装置和多倍频程微波传输方法

    公开(公告)号:CN112448766B

    公开(公告)日:2023-12-19

    申请号:CN202011262315.5

    申请日:2020-11-12

    Applicant: 暨南大学

    Abstract: 本发明提供了一种多倍频程微波传输装置,包括:光源,用于产生并输出光载波;信号调制单元,用于接收所述光载波和待传输微波信号,且用于在被施加预定偏置电压的情况下处于预定调制状态,且用于在处于所述预定调制状态下将所述待传输微波信号调制到所述光载波上,以形成调制光信号;光电探测器,用于将所述调制光信号转换为电信号;其中,在所述预定调制状态下,所述信号调制单元能够抑制所述多倍频程微波传输装置内的失真分量,从而使所述多倍频程微波传输装置工作在预定无杂散动态范围的状态。本发明还提供了一种多倍频程微波传输方法。

    基于微波光子技术的分布式雷达装置及方法

    公开(公告)号:CN117092614A

    公开(公告)日:2023-11-21

    申请号:CN202310980367.3

    申请日:2023-08-04

    Applicant: 暨南大学

    Abstract: 本发明公开了基于微波光子技术的分布式雷达装置及方法,装置包括光源、电光调制器、光环形器、波分复用器、多个雷达收发单元、偏振分束器、滤波器阵列、多个光电探测器、模数转换器、数字处理单元以及信号源;光源、电光调制器、光环形器及波分复用器依次光纤连接;波分复用器分别与多个雷达收发单元光纤连接;光环形器、偏振分束器及滤波器阵列依次光纤连接;滤波器阵列与多个光电探测器光纤连接,多个光电探测器与模数转换器电路连接,模数转换器与数字处理单元电路连接;信号源与电光调制器电路连接。本发明利用边带和偏振复用,实现在光路上一个光源就可扩展四对雷达的收发,提高了频谱利用率,降低了成本。

    微波分频装置及其微波分频方法

    公开(公告)号:CN110417478B

    公开(公告)日:2022-11-29

    申请号:CN201910679021.3

    申请日:2019-07-25

    Applicant: 暨南大学

    Abstract: 本发明提供了一种微波分频装置。该微波分频装置包括环路相位可调的光电振荡环路,其包括:光源,用于产生并输出光载波;信号调制器,用于接收光载波、待分频微波信号以及振荡信号,且将振荡信号和待分频微波信号调制到光载波上,以产生并输出调制光信号;光滤波器,用于对调制光信号进行滤波处理,且用于使待分频微波信号频率的N分之M频率处的光信号通过,1≤M≤N,2≤N;光延迟器,用于对滤波处理后的调制光信号进行延迟处理,以对光电振荡环路的环路相位进行调节;光电探测器,用于将延迟处理后的调制光信号转换为电信号;电功率分束器,用于将电信号分为两路,两路之一作为振荡信号输出到信号调制器,两路之另一作为N分频信号输出。

    基于DP-QPSK调制器与PM串联的相位编码信号发生装置及方法

    公开(公告)号:CN113114370B

    公开(公告)日:2022-07-01

    申请号:CN202110307125.9

    申请日:2021-03-23

    Applicant: 暨南大学

    Abstract: 本发明公开了一种基于DP‑QPSK调制器与PM串联的相位编码信号发生装置及方法,装置包括顺序光路连接的光源、信号调制单元、光起偏器以及光电探测器;所述光源用于产生并输出光载波;所述信号调制单元用于接收光载波、单音微波信号和任意波形发生器的编码信号,形成第一、第二、第三光信号,输出第四光信号;所述光起偏器用于接收信号调制单元输出的第四光信号并对第四光信号进行偏振化处理,形成第五光信号;所述光电探测器用于将偏振化处理后的第五光信号转换为电信号。本发明装置能够产生载波频率可调、无基带分量的全光二相编码微波脉冲信号,装置结构紧凑,工作频率范围宽。

    基于FP谐振腔耦合系统的PT对称全光纤光隔离器及方法

    公开(公告)号:CN113867016A

    公开(公告)日:2021-12-31

    申请号:CN202111126501.0

    申请日:2021-09-26

    Applicant: 暨南大学

    Abstract: 本发明公开了一种基于FP谐振腔耦合系统的PT对称全光纤光隔离器及方法,包括端口一、端口二、有源光纤、第一光纤布拉格光栅、第二光纤布拉格光栅以及第三光纤布拉格光栅;第一光纤布拉格光栅和第二光纤布拉格光栅构成第一法布里‑珀罗谐振腔,第二光纤布拉格光栅和第三光纤布拉格光栅构成第二法布里‑珀罗谐振腔,第一法布里‑珀罗谐振腔与第二法布里‑珀罗谐振腔耦合。本发明利用均匀光纤布拉格光栅构成两个相互耦合的法布里‑珀罗谐振腔系统;通过控制泵浦光的光功率,基于对两个谐振腔的增益和损耗强度的调节,实现该全光纤光隔离器内的宇称‑时间对称的各种相位形式的调节,并且在宇称‑时间对称破缺状态下实现光信号非互易传输。

    多倍频程微波传输装置和多倍频程微波传输方法

    公开(公告)号:CN112448766A

    公开(公告)日:2021-03-05

    申请号:CN202011262315.5

    申请日:2020-11-12

    Applicant: 暨南大学

    Abstract: 本发明提供了一种多倍频程微波传输装置,包括:光源,用于产生并输出光载波;信号调制单元,用于接收所述光载波和待传输微波信号,且用于在被施加预定偏置电压的情况下处于预定调制状态,且用于在处于所述预定调制状态下将所述待传输微波信号调制到所述光载波上,以形成调制光信号;光电探测器,用于将所述调制光信号转换为电信号;其中,在所述预定调制状态下,所述信号调制单元能够抑制所述多倍频程微波传输装置内的失真分量,从而使所述多倍频程微波传输装置工作在预定无杂散动态范围的状态。本发明还提供了一种多倍频程微波传输方法。

    微波分频装置及其微波分频方法

    公开(公告)号:CN110417478A

    公开(公告)日:2019-11-05

    申请号:CN201910679021.3

    申请日:2019-07-25

    Applicant: 暨南大学

    Abstract: 本发明提供了一种微波分频装置。该微波分频装置包括环路相位可调的光电振荡环路,其包括:光源,用于产生并输出光载波;信号调制器,用于接收光载波、待分频微波信号以及振荡信号,且将振荡信号和待分频微波信号调制到光载波上,以产生并输出调制光信号;光滤波器,用于对调制光信号进行滤波处理,且用于使待分频微波信号频率的N分之M频率处的光信号通过,1≤M≤N,2≤N;光延迟器,用于对滤波处理后的调制光信号进行延迟处理,以对光电振荡环路的环路相位进行调节;光电探测器,用于将延迟处理后的调制光信号转换为电信号;电功率分束器,用于将电信号分为两路,两路之一作为振荡信号输出到信号调制器,两路之另一作为N分频信号输出。

    一种基于宇称-时间对称原理的光电振荡器、光纤系统以及集成光电系统

    公开(公告)号:CN110233410A

    公开(公告)日:2019-09-13

    申请号:CN201910535209.0

    申请日:2019-06-20

    Applicant: 暨南大学

    Abstract: 本发明涉及一种基于宇称-时间对称原理的光电振荡器、光纤系统以及集成光电系统,其包括:第一激光器、第二激光器及与其每个输出端连接的第一偏振控制器和第二偏振控制器;依序连接光偏振合束器和第三偏振控制器将两路合为一路;接着依序连接马赫增德尔强度调制器、用于储存能量的长光纤、光电探测器、电放大器、电滤波器以及电功率分束器。本发明可以提供能以光、电两种形式稳定输出低相位噪声信号的高质量微波信号源,且该光电振荡器具有空间域单环、波长域双环的结构,其结构简单、稳定性高、能够产生高纯度、低相位噪声的高频微波信号。

    基于微波光子技术的通感一体雷达装置及方法

    公开(公告)号:CN119689451A

    公开(公告)日:2025-03-25

    申请号:CN202411851251.0

    申请日:2024-12-16

    Applicant: 暨南大学

    Abstract: 本发明公开了基于微波光子技术的通感一体雷达装置及方法,雷达装置包括雷达发射端、雷达接收端以及通信解调端;雷达发射端,将通信信号加载到雷达信号的频谱中,产生并发射包含通信信号的雷达信号;雷达接收端,接收物体反射的雷达信号,经过处理后输入计算机进行处理计算;通信解调端,接收雷达信号并获取其中的通信信号,计算机处理解调通信信号。本发明基于微波光子技术实现通感一体雷达,利用低频窄带信号获得高频宽带信号,并通过频分复用技术,将通信信号加载到雷达信号的频谱中去,实现不占用额外频谱资源的雷达通信一体化,提高了频谱利用率,降低了系统成本,同时还兼具微波光子雷达的技术优势。

    全光微波存储器
    10.
    发明公开

    公开(公告)号:CN119418743A

    公开(公告)日:2025-02-11

    申请号:CN202411483103.8

    申请日:2024-10-23

    Applicant: 暨南大学

    Abstract: 本发明公开了一种全光微波存储器,其包括:移频环,用于使调制光信号在移频环中进行N次光路循环,以对调制光信号进行存储,调制光信号的存储时长=N×调制光信号在移频环中转一圈的时长;移频环包括:光耦合器、频率偏移器、拉曼光纤放大器、延时光纤;其中,光耦合器在进行第1次光路循环时接收的调制光信号由微波信号加载到光信号上形成;光耦合器在进行第i次光路循环时接收的调制光信号为第i‑1次光路循环后移频环输出的调制光信号,2≤i≤N。根据本发明的实施例的全光微波存储器使用拉曼光纤放大器作为移频环中的光放大器对信号进行分布式放大,实现了超长持续时间的线性调频微波信号的多次且长时间的高保真存储。

Patent Agency Ranking