-
公开(公告)号:CN108587903B
公开(公告)日:2021-10-26
申请号:CN201810236195.8
申请日:2018-03-21
Applicant: 暨南大学
Abstract: 本发明公开一种使用支撑浴的多喷头快速3D打印肿瘤组织模型的方法,涉及生物3D打印领域。本发明的方法以海藻酸盐、光固化明胶等混合封装细胞,在支撑浴中快速打印,不同的细胞的打印通过快速切换喷头而实现打印。通过打印正常组织和肿瘤组织于一个完整的模型,从而更好的还原出体内肿瘤组织的结构。水凝胶支撑浴的封闭的性质,可以提供更好的无菌环境,同时打印时避免因沉降导致的细胞密度和种类空间的不可控。喷头的快速切换在一定程度上减少了打印时间,有效减缓了细胞在打印过程中活性的降低,并有效的保证打印结构的完整性。使用同轴针头进行打印则有效解决了凝胶的固化问题。并且肿瘤模型构建速度更快,能够更好地用于肿瘤治疗的研究。
-
公开(公告)号:CN108567992B
公开(公告)日:2021-02-05
申请号:CN201810235786.3
申请日:2018-03-21
Applicant: 暨南大学
Abstract: 本发明公开一种用于脊椎损伤血管快速修复的3D打印生物墨水及其制备方法,涉及生物3D打印领域。该方法包括壳材料墨水的制备、内层细胞层墨水的制备、3D打印制备等步骤。本发明的生物墨水通过使用同轴方法同时打印2~4种材料,外层材料为内层细胞提供有效保护,避免打印时细胞沉降的问题,同时实现细胞种类、密度和分布可控,加入生长因子等促进脊髓损伤血管的快速修复,外层提供良好的力学性能,内层则更加有利于细胞的生长繁殖。本发明的3D打印生物墨水弥补了现有生物墨水的不足,将生物3D打印更好地应用于脊椎损伤血管的修复。
-
公开(公告)号:CN108567992A
公开(公告)日:2018-09-25
申请号:CN201810235786.3
申请日:2018-03-21
Applicant: 暨南大学
CPC classification number: A61L27/222 , A61L27/20 , A61L27/3804 , A61L27/3808 , A61L27/3834 , A61L27/3886 , A61L27/50 , A61L27/54 , A61L2300/406 , A61L2300/414 , A61L2430/38 , B33Y10/00 , B33Y70/00 , B33Y80/00 , C08L5/04
Abstract: 本发明公开一种用于脊椎损伤血管快速修复的3D打印生物墨水及其制备方法,涉及生物3D打印领域。该方法包括壳材料墨水的制备、内层细胞层墨水的制备、3D打印制备等步骤。本发明的生物墨水通过使用同轴方法同时打印2~4种材料,外层材料为内层细胞提供有效保护,避免打印时细胞沉降的问题,同时实现细胞种类、密度和分布可控,加入生长因子等促进脊髓损伤血管的快速修复,外层提供良好的力学性能,内层则更加有利于细胞的生长繁殖。本发明的3D打印生物墨水弥补了现有生物墨水的不足,将生物3D打印更好地应用于脊椎损伤血管的修复。
-
公开(公告)号:CN108815520B
公开(公告)日:2021-04-02
申请号:CN201810628910.2
申请日:2018-06-19
Applicant: 暨南大学
Abstract: 本发明提供了一种仿生二元协同纳米载体及其制备方法与应用。所述的仿生二元协同纳米载体包括红细胞膜和包覆于红细胞膜内的葡萄糖氧化酶和载铁铁蛋白纳米粒子,以及在所述的红细胞膜表面嵌入或内部包载光敏剂;实现肿瘤饥饿治疗与化学动力学治疗的连锁刺激响应性协同,利用红细胞膜的生物亲和性以及靶向分子肿瘤靶向,使两种酶随载体输送到机体的靶向位点,通过肿瘤处808nm近红外光照破膜实现精确给药,有效解决了耐药性问题,并显著降低因药物施用造成的系统毒性,有效避免在体内循环过程中对其他正常组织产生损伤。本发明还提供了所述的仿生二元协同纳米载体的制备方法,具有良好的应用前景。
-
公开(公告)号:CN108815520A
公开(公告)日:2018-11-16
申请号:CN201810628910.2
申请日:2018-06-19
Applicant: 暨南大学
Abstract: 本发明提供了一种仿生二元协同纳米载体及其制备方法与应用。所述的仿生二元协同纳米载体包括红细胞膜和包覆于红细胞膜内的葡萄糖氧化酶和载铁铁蛋白纳米粒子,以及在所述的红细胞膜表面嵌入或内部包载光敏剂;实现肿瘤饥饿治疗与化学动力学治疗的连锁刺激响应性协同,利用红细胞膜的生物亲和性以及靶向分子肿瘤靶向,使两种酶随载体输送到机体的靶向位点,通过肿瘤处808nm近红外光照破膜实现精确给药,有效解决了耐药性问题,并显著降低因药物施用造成的系统毒性,有效避免在体内循环过程中对其他正常组织产生损伤。本发明还提供了所述的仿生二元协同纳米载体的制备方法,具有良好的应用前景。
-
公开(公告)号:CN108567993A
公开(公告)日:2018-09-25
申请号:CN201810236193.9
申请日:2018-03-21
Applicant: 暨南大学
CPC classification number: A61L27/20 , A61L27/222 , A61L27/227 , A61L27/52 , A61L27/54 , A61L27/58 , A61L2300/252 , A61L2300/602 , B33Y80/00 , C08L5/02 , C08L89/00 , C08L5/04
Abstract: 本发明公开一种基于3D打印构建用于降血糖的人工智能胰腺的方法,涉及3D生物打印及人工胰腺领域。该方法包括缩醛化葡聚糖加载胰岛素纳米粒子的制备、打印用水凝胶的制备、水凝胶支撑浴的制备、3D打印制备等步骤。本发明3D打印制备的人工智能胰腺具有生物相容性好,生物可降解的优点,能够根据实时血糖浓度控制胰岛素的释放,从而达到智能降血糖及达到长时间控制血糖浓度在正常范围的目的,避免了多次进行血糖检测以及皮下注射。本发明不需要携带便携式设备,不用更换电池,导管等,能够极大地减轻患者的负担,具有较突出的应用基础研究的价值和极具潜力的市场开发前景。
-
公开(公告)号:CN108567993B
公开(公告)日:2021-02-05
申请号:CN201810236193.9
申请日:2018-03-21
Applicant: 暨南大学
Abstract: 本发明公开一种基于3D打印构建用于降血糖的人工智能胰腺的方法,涉及3D生物打印及人工胰腺领域。该方法包括缩醛化葡聚糖加载胰岛素纳米粒子的制备、打印用水凝胶的制备、水凝胶支撑浴的制备、3D打印制备等步骤。本发明3D打印制备的人工智能胰腺具有生物相容性好,生物可降解的优点,能够根据实时血糖浓度控制胰岛素的释放,从而达到智能降血糖及达到长时间控制血糖浓度在正常范围的目的,避免了多次进行血糖检测以及皮下注射。本发明不需要携带便携式设备,不用更换电池,导管等,能够极大地减轻患者的负担,具有较突出的应用基础研究的价值和极具潜力的市场开发前景。
-
公开(公告)号:CN108587903A
公开(公告)日:2018-09-28
申请号:CN201810236195.8
申请日:2018-03-21
Applicant: 暨南大学
Abstract: 本发明公开一种使用支撑浴的多喷头快速3D打印肿瘤组织模型的方法,涉及生物3D打印领域。本发明的方法以海藻酸盐、光固化明胶等混合封装细胞,在支撑浴中快速打印,不同的细胞的打印通过快速切换喷头而实现打印。通过打印正常组织和肿瘤组织于一个完整的模型,从而更好的还原出体内肿瘤组织的结构。水凝胶支撑浴的封闭的性质,可以提供更好的无菌环境,同时打印时避免因沉降导致的细胞密度和种类空间的不可控。喷头的快速切换在一定程度上减少了打印时间,有效减缓了细胞在打印过程中活性的降低,并有效的保证打印结构的完整性。使用同轴针头进行打印则有效解决了凝胶的固化问题。并且肿瘤模型构建速度更快,能够更好地用于肿瘤治疗的研究。
-
公开(公告)号:CN108543083A
公开(公告)日:2018-09-18
申请号:CN201810630387.7
申请日:2018-06-19
Applicant: 暨南大学
Abstract: 本发明提供了一种生物膜包裹的多模态肿瘤造影剂及其制备方法与应用。所述的生物膜包裹的多模态肿瘤造影剂,包括生物膜和包裹于生物膜中的超顺磁性四氧化三铁的铁蛋白纳米笼(M-HFn)和荧光染料,其中的超顺磁性四氧化三铁的铁蛋白纳米笼与荧光染料连接形成荧光染料-M-HFn复合物,构建得到用于体内的仿生纳米生物膜载体递送体系,可实现体内长循环,增强对肿瘤靶向性,减少非特异性积累,降低对正常组织的损害,同时增强造影效果。本发明还提供了本发明所述的生物膜包裹的多模态肿瘤造影剂的制备方法,在临床肿瘤学早期诊疗等领域拥有重要的应用前景和研究价值。
-
-
-
-
-
-
-
-