-
公开(公告)号:CN118410173A
公开(公告)日:2024-07-30
申请号:CN202410264937.3
申请日:2024-03-08
Applicant: 暨南大学
IPC: G06F16/36 , G06F16/35 , G06F18/214 , G06F18/2415 , G06F18/10 , G06F18/213
Abstract: 本发明公开了一种基于时序知识图谱的系统用户行为预测分析方法、系统及设备,该方法包括下述步骤:提取及组合用户行为特征,进行数据预处理;在设定的时间戳下构建动态时序知识图谱,基于关系特征提取器提取同一段时间域的多个行为关系对应的邻域特征作为目标用户在该时刻域的行为向量;构建XLnet网络模型,XLnet网络模型将动态时序知识图谱转化的行为向量输出为分布向量,在XLnet网络模型上添加Softmax层,将XLnet网络模型输出的分布向量转化为行为分类概率,通过分类概率的概率值对应得到预测行为类型。本发明在用户行为预测分析时能够更全面地考虑时间关系和语境信息,对用户行为做出更加准确的预测。