-
公开(公告)号:CN110738093B
公开(公告)日:2022-07-01
申请号:CN201910759157.5
申请日:2019-08-16
Applicant: 杭州电子科技大学
Abstract: 本发明公开了基于改进小世界回声状态网络肌电的分类方法,首先,利用小世界网络来改善ESN的储备池结构,再利用加边概率改进小世界网络,称该网络为改进小世界回声状态网络,这既提高了储备池的适应性,又提高了ESN的泛化能力和稳定性。然后,通过训练网络可以得到网络的输出权重,并以此为相应的特征。采集跌倒、走、坐、蹲、上楼、下楼这六种动作的肌电信号,利用ISWLESN提取相应的特征,再利用PCV降低特征维数。最后,利用散点图、类可分性指标和DBI来表征网络特征的性能。结果表明,ISWLESN有很好的聚类性能,用于支持向量机分类也有很高的精度。
-
公开(公告)号:CN110633644A
公开(公告)日:2019-12-31
申请号:CN201910758611.5
申请日:2019-08-16
Applicant: 杭州电子科技大学
Abstract: 本发明涉及一种基于肌电小波包分解和GABP的人体关节角度预测方法。首先,获取人体膝和踝关节伸屈运动的表面肌电信号数据和实际角度信号。接着对动作信号段的原始肌电信号进行小波降噪得到有效表面肌电信号。将获取的有效肌电信号进行小波包分解,获得各层小波系数。计算各层小波系数的均方根和排列熵特征,作为预测网络的输入。然后构建GABP网络预测模型。使用遗传算法来对BP神经网络模型进行参数训练,得到最优初始化权值和阈值。最后进行网络训练,将提取的特征值分为训练集与测试集,使用训练集训练好网络之后,再使用测试集验证预测准确率。实验结果表明,该方法获得了较高的人体关节角度预测率。
-
公开(公告)号:CN110464517B
公开(公告)日:2021-09-07
申请号:CN201910759180.4
申请日:2019-08-16
Applicant: 杭州电子科技大学
Abstract: 本发明涉及一种基于小波加权排列熵的肌电信号识别方法。首先,从人体上肢的相关肌肉组上采集表面肌电信号,运用能量阈值确定表面肌电信号的动作信号段,利用小波变换对动作信号段的表面肌电信号进行四层分解得到各频率段小波子带,并对各小波子带求取加权排列熵。然后对所求得的加权排列熵进行组合,选取最佳的小波子带特征组合作为组合特征集。最后将各小波子带的组合特征集作为特征向量输入到支持向量机分类器,实现肌电信号的手部多运动模式识别。实验结果表明,该方法用于手部多动作识别获得了较高的分类精度,具有更好的识别效果。该方法可以有效地应用于复杂日常手部运动的模式识别,有助于提高肌电假手的灵活性,使其更好地用于生活。
-
公开(公告)号:CN110781751A
公开(公告)日:2020-02-11
申请号:CN201910923329.8
申请日:2019-09-27
Applicant: 杭州电子科技大学
Abstract: 本发明提出了一种基于跨连型卷积神经网络的情感脑电信号分类方法,本发明首先利用V3的第一层卷积层提取脑电信号底层特征,并将其作为V1的输入,同时被第二层池化层下采样后输入给第三层卷积层提取中层特征。中层特征将作为V2的输入,并且被V3的第四层池化层下采样后输入给V3的第五层卷积层提取高层特征。接着,三层特征分别降维后一起输入到V3的第八层全连接层中融合,最后进入Softmax层进行分类。比较分类结果与实际标签,计算损失值,然后利用反向传播算法更新卷积核和连接权重。本发明可较高的脑电信号分类准确率,识别结果优于传统机器学习方法和传统CNN模型。
-
公开(公告)号:CN110738093A
公开(公告)日:2020-01-31
申请号:CN201910759157.5
申请日:2019-08-16
Applicant: 杭州电子科技大学
IPC: G06K9/00 , G06K9/62 , G06N3/04 , G06N3/08 , A61B5/0488
Abstract: 本发明公开了基于改进小世界回声状态网络肌电的分类方法,首先,利用小世界网络来改善ESN的储备池结构,再利用加边概率改进小世界网络,称该网络为改进小世界回声状态网络,这既提高了储备池的适应性,又提高了ESN的泛化能力和稳定性。然后,通过训练网络可以得到网络的输出权重,并以此为相应的特征。采集跌倒、走、坐、蹲、上楼、下楼这六种动作的肌电信号,利用ISWLESN提取相应的特征,再利用PCV降低特征维数。最后,利用散点图、类可分性指标和DBI来表征网络特征的性能。结果表明,ISWLESN有很好的聚类性能,用于支持向量机分类也有很高的精度。
-
公开(公告)号:CN110464517A
公开(公告)日:2019-11-19
申请号:CN201910759180.4
申请日:2019-08-16
Applicant: 杭州电子科技大学
Abstract: 本发明涉及一种基于小波加权排列熵的肌电信号识别方法。首先,从人体上肢的相关肌肉组上采集表面肌电信号,运用能量阈值确定表面肌电信号的动作信号段,利用小波变换对动作信号段的表面肌电信号进行四层分解得到各频率段小波子带,并对各小波子带求取加权排列熵。然后对所求得的加权排列熵进行组合,选取最佳的小波子带特征组合作为组合特征集。最后将各小波子带的组合特征集作为特征向量输入到支持向量机分类器,实现肌电信号的手部多运动模式识别。实验结果表明,该方法用于手部多动作识别获得了较高的分类精度,具有更好的识别效果。该方法可以有效地应用于复杂日常手部运动的模式识别,有助于提高肌电假手的灵活性,使其更好地用于生活。
-
-
-
-
-