一种基于深度强化学习的柔性车间作业动态调度方法

    公开(公告)号:CN117892969B

    公开(公告)日:2024-10-29

    申请号:CN202410075997.0

    申请日:2024-01-18

    Abstract: 本发明公开了一种基于深度强化学习的柔性车间作业动态调度方法,属于车间作业动态调度领域,该方法包括以作业总拖期时间最小化、作业最大完成时间最小化和平均机器利用率最大化为优化目标,得到多目标模型;利用析取图模型对动态作业车间调度问题进行抽象,得到调度状态;根据调度状态和多目标模型,以优化目标为高层智能体,以作业和机器为低层智能体,利用马尔可夫决策过程,得到作业调度模型;获取新作业集合,并根据新作业集合,利用作业调度模型,得到调度计划表,完成柔性车间作业动态调度。本发明解决了现有技术中依赖调度规则而缺乏泛化性的问题。

    一种基于深度强化学习的柔性车间作业动态调度方法

    公开(公告)号:CN117892969A

    公开(公告)日:2024-04-16

    申请号:CN202410075997.0

    申请日:2024-01-18

    Abstract: 本发明公开了一种基于深度强化学习的柔性车间作业动态调度方法,属于车间作业动态调度领域,该方法包括以作业总拖期时间最小化、作业最大完成时间最小化和平均机器利用率最大化为优化目标,得到多目标模型;利用析取图模型对动态作业车间调度问题进行抽象,得到调度状态;根据调度状态和多目标模型,以优化目标为高层智能体,以作业和机器为低层智能体,利用马尔可夫决策过程,得到作业调度模型;获取新作业集合,并根据新作业集合,利用作业调度模型,得到调度计划表,完成柔性车间作业动态调度。本发明解决了现有技术中依赖调度规则而缺乏泛化性的问题。

Patent Agency Ranking