-
公开(公告)号:CN103941866B
公开(公告)日:2017-02-15
申请号:CN201410137566.9
申请日:2014-04-08
Applicant: 河海大学常州校区
IPC: G06F3/01
Abstract: 本发明公开了一种基于Kinect深度图像的三维手势识别方法,其特征在于,包括如下步骤:步骤一:检测多个手掌特征点;步骤二:根据各个手掌特征点的起始位置,在手势库中寻找出与手掌特征点的起始位置相匹配的手势,基于与手掌特征点的起始位置相匹配的手势构建手势候选集;步骤三:对手掌特征点的运动轨迹进行跟踪记录,从手势候选集中剔除不符合手掌特征点的运动轨迹的手势;步骤四:根据手势候选集中剩余的手势的情况,得到手势的识别结果。本发明实现了与计算机的自然交互,丰富了人机交互的方式。本发明可以广泛应用于计算机游戏控制、虚拟现实、数字教育等领域。
-
公开(公告)号:CN103941866A
公开(公告)日:2014-07-23
申请号:CN201410137566.9
申请日:2014-04-08
Applicant: 河海大学常州校区
IPC: G06F3/01
Abstract: 本发明公开了一种基于Kinect深度图像的三维手势识别方法,其特征在于,包括如下步骤:步骤一:检测多个手掌特征点;步骤二:根据各个手掌特征点的起始位置,在手势库中寻找出与手掌特征点的起始位置相匹配的手势,基于与手掌特征点的起始位置相匹配的手势构建手势候选集;步骤三:对手掌特征点的运动轨迹进行跟踪记录,从手势候选集中剔除不符合手掌特征点的运动轨迹的手势;步骤四:根据手势候选集中剩余的手势的情况,得到手势的识别结果。本发明实现了与计算机的自然交互,丰富了人机交互的方式。本发明可以广泛应用于计算机游戏控制、虚拟现实、数字教育等领域。
-