基于时序数据的血透病人风险预测装置

    公开(公告)号:CN115547502A

    公开(公告)日:2022-12-30

    申请号:CN202211486609.5

    申请日:2022-11-23

    Applicant: 浙江大学

    Abstract: 本发明公开了一种基于时序数据的血透病人风险预测装置,采用双向GRU‑D网络以端到端的方式来处理临床检查时序数据,能够同时较好地处理不均匀采样、有较多缺失值的临床数据,更好地捕捉病人临床数据的动态变化,在此基础上,以临床检查时序数据、图像诊断文字信息、病人个体特征信息这三种多模态信息作为数据源,并采用深度学习依据数据源来提取临床检查表征、诊断表征以及个体特征表征,然后结合这三个特征预测血透病人的死亡率,这样提升死亡预测的准确率和效率,为医生诊疗提供辅助,对于预测出潜在死亡的病人,医生可以及时给与干预,从而优化医疗资源的干预。

    基于时序数据的血透病人风险预测装置

    公开(公告)号:CN115547502B

    公开(公告)日:2023-04-07

    申请号:CN202211486609.5

    申请日:2022-11-23

    Applicant: 浙江大学

    Abstract: 本发明公开了一种基于时序数据的血透病人风险预测装置,采用双向GRU‑D网络以端到端的方式来处理临床检查时序数据,能够同时较好地处理不均匀采样、有较多缺失值的临床数据,更好地捕捉病人临床数据的动态变化,在此基础上,以临床检查时序数据、图像诊断文字信息、病人个体特征信息这三种多模态信息作为数据源,并采用深度学习依据数据源来提取临床检查表征、诊断表征以及个体特征表征,然后结合这三个特征预测血透病人的死亡率,这样提升死亡预测的准确率和效率,为医生诊疗提供辅助,对于预测出潜在死亡的病人,医生可以及时给与干预,从而优化医疗资源的干预。

Patent Agency Ranking