-
公开(公告)号:CN103970863B
公开(公告)日:2017-12-19
申请号:CN201410193287.4
申请日:2014-05-08
Applicant: 清华大学
IPC: G06F17/30
Abstract: 本发明公开了一种基于LDA主题模型的微博用户兴趣的挖掘方法,包括以下步骤:从微博中采集用户关系信息和用户标签信息;将用户关系信息集成至LDA主题模型中;根据兴趣类别从用户标签信息中分别为每个主题选定一个标签作为种子词,并提取多个种子词以将多个种子词集成至LDA主题模型中,以利用LDA主题模型对用户的兴趣进行挖掘。本发明实施例的挖掘方法,通过采集用户关系信息和用户标签信息,从而根据用户关系信息和用户标签信息深入的挖掘隐藏在用户关系和用户标签当中的用户兴趣和用户标签的对应关系,找出用户在不同兴趣领域的分布。本发明还公开了一种基于LDA主题模型的微博用户兴趣的挖掘系统。
-
公开(公告)号:CN103970863A
公开(公告)日:2014-08-06
申请号:CN201410193287.4
申请日:2014-05-08
Applicant: 清华大学
IPC: G06F17/30
CPC classification number: G06F17/3089
Abstract: 本发明公开了一种基于LDA主题模型的微博用户兴趣的挖掘方法,包括以下步骤:从微博中采集用户关系信息和用户标签信息;将用户关系信息集成至LDA主题模型中;根据兴趣类别从用户标签信息中分别为每个主题选定一个标签作为种子词,并提取多个种子词以将多个种子词集成至LDA主题模型中,以利用LDA主题模型对用户的兴趣进行挖掘。本发明实施例的挖掘方法,通过采集用户关系信息和用户标签信息,从而根据用户关系信息和用户标签信息深入的挖掘隐藏在用户关系和用户标签当中的用户兴趣和用户标签的对应关系,找出用户在不同兴趣领域的分布。本发明还公开了一种基于LDA主题模型的微博用户兴趣的挖掘系统。
-