-
公开(公告)号:CN106771700B
公开(公告)日:2019-07-12
申请号:CN201611004814.8
申请日:2016-11-11
Applicant: 清华大学 , 全球能源互联网研究院
IPC: G01R31/00
Abstract: 本发明提供了一种柔性直流输电线路雷击干扰的快速识别方法及装置,包括:构造柔性直流输电线路的极模反向电压故障暂态行波和所述的极模反向电压故障暂态行波的等效极模反向电压行波;根据所述等效极模反向电压行波的非零值的个数初步判定是否可能发生雷击干扰;当初步判定可能发生雷击干扰时,对所述极模反向电压故障暂态行波的波尾进行拟合,判断是否发生雷击干扰。通过本发明的技术方案,可以有效地提升柔性直流输电线路雷击干扰识别的速度,极大地提高超高速柔性直流输电线路保护的可靠性。
-
公开(公告)号:CN105896500A
公开(公告)日:2016-08-24
申请号:CN201610308089.7
申请日:2016-05-11
Applicant: 全球能源互联网研究院 , 清华大学 , 国网安徽省电力公司 , 国家电网公司
Abstract: 本发明涉及一种可提高线路快速保护可靠性的高阻尼直流电网系统,包括换流站、直流母线、直流输电线路、直流断路器、线路直流电抗器和换流站直流电抗器;在各直流输电线路的两端配置线路直流电抗器;在换流站与直流母线之间配置换流站直流电抗器;根据保护需求,所述换流站直流电抗器可选择性配置。本发明的技术方案通过在换流站直流出口和直流线路两端配置电抗器,可在降低直流电网故障电流上升率的同时,提升直流线路故障快速检测与定位的可靠性。
-
公开(公告)号:CN106771700A
公开(公告)日:2017-05-31
申请号:CN201611004814.8
申请日:2016-11-11
Applicant: 清华大学 , 全球能源互联网研究院
IPC: G01R31/00
CPC classification number: G01R31/00
Abstract: 本发明提供了一种柔性直流输电线路雷击干扰的快速识别方法及装置,包括:构造柔性直流输电线路的极模反向电压故障暂态行波和所述的极模反向电压故障暂态行波的等效极模反向电压行波;根据所述等效极模反向电压行波的非零值的个数初步判定是否可能发生雷击干扰;当初步判定可能发生雷击干扰时,对所述极模反向电压故障暂态行波的波尾进行拟合,判断是否发生雷击干扰。通过本发明的技术方案,可以有效地提升柔性直流输电线路雷击干扰识别的速度,极大地提高超高速柔性直流输电线路保护的可靠性。
-
公开(公告)号:CN106385015A
公开(公告)日:2017-02-08
申请号:CN201610998450.3
申请日:2016-11-11
Applicant: 清华大学 , 全球能源互联网研究院
IPC: H02H7/26
Abstract: 本发明提供了一种柔性直流输电线路的保护方法和保护装置,包括:构造柔性直流输电线路的极模反向电压故障暂态行波和极模反向电压故障暂态行波的等效极模反向电压行波;根据所述极模反向电压故障暂态行波和所述等效极模反向电压行波判断是否为雷击干扰;若判断结果为雷击干扰,则直接结束,不需要采取任何措施;若判断结果为不是雷击干扰,则判断等效极模反向电压行波是否大于阈值,若判断结果为大于阈值,则断开所述柔性直流输电线路,以实现对柔性直流输电线路的保护。通过本发明的技术方案,可以快速地检测出柔性直流输电线路是否发生故障并采取相应措施,极大地提高柔性直流输电线路保护的动作速度和可靠性。
-
公开(公告)号:CN106526422B
公开(公告)日:2020-03-27
申请号:CN201610996242.X
申请日:2016-11-11
Applicant: 清华大学 , 全球能源互联网研究院
IPC: G01R31/08
Abstract: 本发明提供了一种柔性直流输电线路故障行波的处理方法,包括:分别获取柔性直流输电线路的极模电流和极模电压故障暂态行波;获取极模反向电压故障暂态行波;获取极模反向电压故障暂态行波的模极大值,得到极模反向电压故障暂态行波的等效极模反向电压行波。本发明的技术方案,能够有效地展现出故障行波与高频暂态干扰的区别,使柔性直流输电线路故障的整体特征更加简洁和直观;还能够消除极模反向电压故障暂态行波中直流和低频信号的影响,凸显出行波波过程的高频特性,降低了对柔性直流系统下行波波过程的分析难度,使得超高速柔性直流输电线路保护成为可能。
-
公开(公告)号:CN106385015B
公开(公告)日:2019-03-01
申请号:CN201610998450.3
申请日:2016-11-11
Applicant: 清华大学 , 全球能源互联网研究院
IPC: H02H7/26
Abstract: 本发明提供了一种柔性直流输电线路的保护方法和保护装置,包括:构造柔性直流输电线路的极模反向电压故障暂态行波和极模反向电压故障暂态行波的等效极模反向电压行波;根据所述极模反向电压故障暂态行波和所述等效极模反向电压行波判断是否为雷击干扰;若判断结果为雷击干扰,则直接结束,不需要采取任何措施;若判断结果为不是雷击干扰,则判断等效极模反向电压行波是否大于阈值,若判断结果为大于阈值,则断开所述柔性直流输电线路,以实现对柔性直流输电线路的保护。通过本发明的技术方案,可以快速地检测出柔性直流输电线路是否发生故障并采取相应措施,极大地提高柔性直流输电线路保护的动作速度和可靠性。
-
公开(公告)号:CN106526422A
公开(公告)日:2017-03-22
申请号:CN201610996242.X
申请日:2016-11-11
Applicant: 清华大学 , 全球能源互联网研究院
IPC: G01R31/08
Abstract: 本发明提供了一种柔性直流输电线路故障行波的处理方法,包括:分别获取柔性直流输电线路的极模电流和极模电压故障暂态行波;获取极模反向电压故障暂态行波;获取极模反向电压故障暂态行波的模极大值,得到极模反向电压故障暂态行波的等效极模反向电压行波。本发明的技术方案,能够有效地展现出故障行波与高频暂态干扰的区别,使柔性直流输电线路故障的整体特征更加简洁和直观;还能够消除极模反向电压故障暂态行波中直流和低频信号的影响,凸显出行波波过程的高频特性,降低了对柔性直流系统下行波波过程的分析难度,使得超高速柔性直流输电线路保护成为可能。
-
公开(公告)号:CN109710971B
公开(公告)日:2024-07-26
申请号:CN201811384152.0
申请日:2018-11-20
Applicant: 国家电网有限公司 , 全球能源互联网研究院有限公司 , 国网冀北电力有限公司
IPC: G06F30/367 , G06F119/02
Abstract: 本发明提供了一种高压直流断路器中IGBT器件可靠性评估方法和装置,将获取的电容放电曲线和流过半导体模块中IGBT器件的电流曲线分别代入预先构建的仿真模型,分别得到半导体单元和半导体模块中IGBT器件的评估参数;基于半导体单元中IGBT器件的评估参数和半导体模块中IGBT器件的评估参数对半导体模块中IGBT器件的可靠性进行评估;评估参数包括结温曲线、关断时刻和最高结温,仿真模型包括半导体单元。本发明得到的可靠性评估结果准确性高,能够准确反映仿真模型中IGBT器件在关断时刻的结温和电流值和直流断路器中IGBT器件在实际工况下的关断时刻的结温和电流值,为验证直流断路器中IGBT器件是否能够满足直流断路器特殊工况的要求提供基础,且简单易行,易于实现。
-
公开(公告)号:CN110968938B
公开(公告)日:2024-03-15
申请号:CN201911049362.9
申请日:2019-10-31
Applicant: 全球能源互联网研究院有限公司 , 国网河北省电力有限公司 , 国家电网有限公司
IPC: G06F30/20
Abstract: 本发明涉及用于电磁暂态仿真的理想开关过程分析方法及系统,包括以下内容:步骤1.根据电磁暂态仿真系统的开关标志变量求解电磁暂态仿真系统中的状态方程,获取当前时步电磁暂态仿真系统的状态量值;步骤2.确定当前时步内电磁暂态仿真系统中的开关动作情况;步骤3.根据当前时步内电磁暂态仿真系统中的开关动作情况更新电磁暂态仿真系统的仿真时间、电磁暂态仿真系统的状态量值以及开关标志变量,若仿真到达设定结束时间,则输出电磁暂态仿真系统的状态量值,否则返回步骤1。本发明只需一步迭代求解过程即可处理开关动作,有效提高仿真效率。
-
公开(公告)号:CN112630590B
公开(公告)日:2022-04-12
申请号:CN202011297161.3
申请日:2020-11-18
Applicant: 长沙理工大学 , 全球能源互联网研究院有限公司
IPC: G01R31/08
Abstract: 本发明公开了一种柔性直流输电线路雷击干扰识别方法、装置、系统及可读存储介质,所述方法包括:步骤1:采集柔性直流输电线路上在保护启动时刻前、后的电压行波数据和电流行波数据;步骤2:利用所述电压行波数据和所述电流行波数据构造线模反向电压行波;步骤3:对所述线模反向电压行波进行小波变换提取特定尺度下的模极大值;步骤4:利用所述特定尺度下的模极大值识别是否发生了雷击干扰。本发明利用所述方法在柔性直流输电线路全长范围内,可以快速可靠地识别线路的雷电绕击干扰,满足柔性直流输电线路继电保护需求,为行波保护在柔性直流输电系统中的实用化进程提供了有力支撑。
-
-
-
-
-
-
-
-
-