基于噪声不确定性的全向超表面辅助隐蔽通信方法及系统

    公开(公告)号:CN116527196A

    公开(公告)日:2023-08-01

    申请号:CN202310505563.5

    申请日:2023-05-08

    Applicant: 福州大学

    Abstract: 本发明提供了基于噪声不确定性的全向超表面辅助隐蔽通信方法及系统,包括以下步骤:步骤1:确定智能全向超表面的工作模式,给出透射和反射系数的数学表达式;步骤2:推导Alice能与Willie正常通信的条件以及Alice不被Willie以100%的概率检测到隐蔽传输的条件;步骤3:分析Willie的检测性能,根据Willie处噪声功率的概率密度函数得到其最小检测错误概率作为系统的隐蔽约束;步骤4:分析Alice到Bob的传输情况,得到系统有效隐蔽速率的表达式;步骤5:建立智能全向超表面辅助隐蔽通信系统的优化问题,联合设计Alice处发射隐蔽消息的最优功率以及智能全向超表面的TARCs,最大化系统有效隐蔽速率。应用本技术方案可有效提高系统的隐蔽性能,保证信息的高效、安全传输。

    基于混合中继-智能反射面和联邦学习的无线通信方法

    公开(公告)号:CN115412906B

    公开(公告)日:2025-02-14

    申请号:CN202211011016.3

    申请日:2022-08-23

    Applicant: 福州大学

    Abstract: 本发明涉及一种基于混合中继‑智能反射面和联邦学习的无线通信方法。联邦学习作为分布式机器学习的一种,它的核心思想是在边缘设备上通过协作训练学习模型以获得最优全局模型,并且同时避免传输原始数据。考虑到无线信道固有的叠加特性,因此引入空中计算来支持大量的本地设备上传数据。同时根据物理层安全中的保密速率来筛除部分不安全的设备以获得更高的安全性。由于混合中继‑智能反射面不仅可以反射而且可以放大入射信号,因此可以通过它来增强联邦学习过程中的上行链路的增益,以获得更优的精确度。本发明通过制定一种设计方法,交替优化设备选择、混合中继‑智能反射面放大系数、相移以及接收波束成形向量以提高联邦学习的精确度和安全性。

    基于混合中继-智能反射面和联邦学习的无线通信方法

    公开(公告)号:CN115412906A

    公开(公告)日:2022-11-29

    申请号:CN202211011016.3

    申请日:2022-08-23

    Applicant: 福州大学

    Abstract: 本发明涉及一种基于混合中继‑智能反射面和联邦学习的无线通信方法。联邦学习作为分布式机器学习的一种,它的核心思想是在边缘设备上通过协作训练学习模型以获得最优全局模型,并且同时避免传输原始数据。考虑到无线信道固有的叠加特性,因此引入空中计算来支持大量的本地设备上传数据。同时根据物理层安全中的保密速率来筛除部分不安全的设备以获得更高的安全性。由于混合中继‑智能反射面不仅可以反射而且可以放大入射信号,因此可以通过它来增强联邦学习过程中的上行链路的增益,以获得更优的精确度。本发明通过制定一种设计方法,交替优化设备选择、混合中继‑智能反射面放大系数、相移以及接收波束成形向量以提高联邦学习的精确度和安全性。

Patent Agency Ranking