-
公开(公告)号:CN110134720B
公开(公告)日:2021-02-09
申请号:CN201910412962.0
申请日:2019-05-17
Applicant: 苏州大学
IPC: G06F16/2458 , G06F16/28 , G06N3/04 , G06N3/08
Abstract: 本发明公开了一种融合局部特征与深度学习的事件联合抽取方法。本发明融合局部特征与深度学习的事件联合抽取方法,包括:抽取实体、词性与依存分析,利用PV‑DM模型训练文档向量;学习隐藏特征,进入GCN;再次,识别出事件元素与事件触发之间的记忆单元,帮助识别事件类型与事件论元;最后,使用CRF对最终的事件类型进行标注,全连接层中,用Softmax函数对事件元素进行识别。本发明的有益效果:借助文档向量学习文章中的主旨信息,其次利用图卷积网络挖掘事件之间的联系,最后利用记忆单元与局部特征学习事件类型与事件元素之间的信息,以此完成事件联合抽取,提高其识别性能。
-
公开(公告)号:CN110134720A
公开(公告)日:2019-08-16
申请号:CN201910412962.0
申请日:2019-05-17
Applicant: 苏州大学
IPC: G06F16/2458 , G06F16/28 , G06N3/04 , G06N3/08
Abstract: 本发明公开了一种融合局部特征与深度学习的事件联合抽取方法。本发明融合局部特征与深度学习的事件联合抽取方法,包括:抽取实体、词性与依存分析,利用PV-DM模型训练文档向量;学习隐藏特征,进入GCN;再次,识别出事件元素与事件触发之间的记忆单元,帮助识别事件类型与事件论元;最后,使用CRF对最终的事件类型进行标注,全连接层中,用Softmax函数对事件元素进行识别。本发明的有益效果:借助文档向量学习文章中的主旨信息,其次利用图卷积网络挖掘事件之间的联系,最后利用记忆单元与局部特征学习事件类型与事件元素之间的信息,以此完成事件联合抽取,提高其识别性能。
-