-
公开(公告)号:CN115630413B
公开(公告)日:2025-03-25
申请号:CN202211417874.8
申请日:2022-11-14
Applicant: 鞍钢股份有限公司
IPC: G06F30/10 , G06F30/20 , G06F119/08 , G06F119/14
Abstract: 本发明涉及一种确定砌筑高炉炉缸侧壁炭砖长度的方法,该高炉炉缸侧壁炭砖最大长度L为:L=L1+L2+L3+....+Ln;其中,L1、L2、L3....Ln是以0.5~2℃为步长,计算从炭砖热面温度开始到冷面温度结束,每降低0.5~2℃时炭砖的对应长度;#imgabs0#其中,#imgabs1#和#imgabs2#分别为T热、T热‑1、T热‑2和T热‑n‑1温度下的炭砖导热系数;q为高炉炉缸热流强度;其中,T热温度为炭砖热面温度t热;T热‑n‑1温度为炭砖冷面温度t冷。优点是:避免采用过长的炭砖,可减少砌筑成本,同时也减小了砌筑难度。
-
公开(公告)号:CN114778576B
公开(公告)日:2024-11-29
申请号:CN202210329181.7
申请日:2022-03-31
Applicant: 鞍钢股份有限公司
IPC: G01N23/20 , G01N23/2005
Abstract: 本发明涉及一种预测高炉料柱焦粉末的方法,包括以下步骤:1)将块状焦炭破碎、磨球,制成球状焦炭颗粒;2)对球状焦炭颗粒高温热处理,惰性气体保护,处理温度取值范围为800℃~1500℃;3)转鼓,球状焦炭转鼓200~1000转,转速为10~30转/min;4)筛分后收集转鼓后粒径小于X mm的焦粉以及粒径大于Y mm的焦炭;5)X射线衍射分析;6)焦炭(粉)脱落指数计算;7)高炉内部焦炭(粉)取样,脱落指数计算验证;8)结果反馈修正参数。优点是:利用原料焦炭在实验室条件下模拟焦炭的高温反应及物理变化,通过石墨化前后焦炭的变化情况预测焦炭在高炉内石墨化及焦粉产生情况。
-
公开(公告)号:CN116042937B
公开(公告)日:2024-10-22
申请号:CN202310055561.0
申请日:2023-01-19
Applicant: 鞍钢股份有限公司
Abstract: 本发明涉及钢铁冶金技术领域,特别涉及一种高炉超高富氧冶炼方法。限制入炉焦炭指标;提高焦炭粒度均匀性;提高煤粉燃烧率;大比例中心加焦;控制焦炭批重;采用低碱度造渣制度减少石灰入炉量;控制鼓风中富氧率在10~50%;控制炉腹煤气量指数;控制鼓风动能;溜槽最外环布矿石量占矿石批重量的20%~30%。在鼓风富氧率提高到50%后,高炉仍稳定顺行;高炉超高富氧率冶炼后,有效提高煤粉燃烧率,降低燃耗;解决大喷煤煤粉燃烧率降低而燃料比增加问题;利用超高富氧后炉缸热量增加提高渣铁温度,解决了酸性渣冶炼脱硫能力弱和炉渣流动性差问题;采用酸性渣冶炼,延长高炉寿命,降低吨铁成本。
-
公开(公告)号:CN118313822A
公开(公告)日:2024-07-09
申请号:CN202410356341.6
申请日:2024-03-27
Applicant: 鞍钢股份有限公司
IPC: G06Q10/30 , C21B5/00 , G06Q30/0201 , G06Q10/063 , G16C20/20 , G16C20/10
Abstract: 本发明涉及一种高炉使用废钢铁素回收率评价方法,步骤为:整理高炉生产指标数据按照吨铁折算,高炉生产指标数据;根据入炉矿石消耗量及化学成分(TFe)、入炉燃料消耗量及灰分、灰成分,计算矿石和燃料入炉铁素量;根据铁水产量及成分、炉渣量及成分、炉尘量及成分,计算出炉铁素量;用废钢转化成生铁的铁素量占入炉废钢的表观铁素量的百分比表示。本发明的优点是:根据高炉冶炼铁素流平衡原理,利用现场生产实践数据,计算评价高炉使用废钢铁素回收率,能够准确描述废钢对高炉增产效果的贡献程度,评价废钢铁素回收率符合实际要求,对高炉使用废钢的经济性评价具有很好的指导意义。
-
公开(公告)号:CN118308545A
公开(公告)日:2024-07-09
申请号:CN202410344534.X
申请日:2024-03-25
Applicant: 鞍钢股份有限公司
IPC: C21B5/00
Abstract: 本发明提供一种基于高炉炉料拆分的布料方法,包括以下步骤:将高炉入炉焦炭分为A类焦炭及B类焦炭,将分类后的入炉焦炭分别存储于不同矿槽内;根据B类焦炭占总焦炭重量的比例,确定高炉料单周期;将料单周期内所有B类焦炭,拆分成两批焦炭布料;校准确定料单周期内A类焦炭的批重。本发明通过该布料方法,能在无需设备改造的情况下实现,将原有优质A类焦炭在矿石环状带区域的焦层厚度降低,质量一般的B类焦炭在矿石环状带区域的焦层厚度增加,而中心加焦区域则完全由优质A类焦炭覆盖。进而大幅提升高炉炉况稳定性,在完全打通中心气流之后,逐步降低中心焦比例。最终降低燃料比。
-
公开(公告)号:CN113159562B
公开(公告)日:2023-12-19
申请号:CN202110407394.2
申请日:2021-04-15
Applicant: 鞍钢股份有限公司
IPC: G06F17/18
Abstract: 本发明涉及高炉烧结散料层的空隙度计算和块状带压差的研究技术领域,尤其涉及一种用多元散料层空隙度评价烧结矿粒度的方法。具体包括如下步骤:1)确定烧结矿粒度组成;2)计算烧结矿平均粒径dp,mm;3)计算烧结矿粒度偏析度δ烧4)计算多元散料的填充度,%:5)计算烧结散料层的多元空隙度ε混,%;6)判断相同平均粒径条件下料柱的散料层透气性能指标;用多元散料层空隙度一个数值,直接评估烧结散料层的透气性能,进而便于企业对烧结粒度质量的控制和
-
公开(公告)号:CN117115085A
公开(公告)日:2023-11-24
申请号:CN202310918972.8
申请日:2023-07-24
Applicant: 鞍钢股份有限公司
IPC: G06T7/00 , C21B5/00 , G01B21/02 , G01F23/22 , G01J5/48 , G06T7/62 , G06T7/70 , G06V20/52 , G06V10/40
Abstract: 本发明提供了一种基于料面热图像判断与识别高炉管道行程的方法,涉及高炉冶金技术领域,包括如下步骤:S1、建立炉喉料面坐标体系;S2、以炉喉中心为起点,沿顺时针方向将炉喉圆心角等分为a个扇区;S3、以圆环直径坐标为横坐标,以扇区为纵坐标,将高炉炉喉截面划分为n×a个单元;S4、使热像仪间隔相同时间扫描一次料面;S5、从热像仪第二次扫描开始,每次扫描后计算每个单元温度变化幅度;S6、基于单元温度变化幅度判断高炉炉喉截面局部是否出现管道行程,S7、识别中心区域煤气流发展,防止出现误判。本发明利用图像识别技术判断与识别高炉在生产过程管道行程,以提醒高炉操作者采取应对措施,避免对高炉稳定顺行产生严重影响。
-
公开(公告)号:CN117114397A
公开(公告)日:2023-11-24
申请号:CN202311059721.5
申请日:2023-08-22
Applicant: 鞍钢股份有限公司
Abstract: 本发明涉及一种高炉崩料智能预测及应对方法,包括步骤(1)计算获得高炉日均上料吨铁耗氧量;(2)根据当前燃料比对当前上料吨铁耗氧量进行修正;(3)对高炉当前工作时刻的理论下料和实际下料铁量差Xi进行计算,实时判断高炉内部下料空间情况;(4)对崩料指数ηi进行实时计算并评估崩料风险;(5)对崩料指数进行评估并采取相应措施;本发明通过风口吨铁耗氧指标高炉当前工作时刻的理论下料和实际下料铁量差,得到崩料指数,评估其下料空间变化情况,对崩料风险进行实时追踪和评估,实现高炉崩料的精准预测,提前预防崩料发生,减少崩料事故。
-
公开(公告)号:CN115896372A
公开(公告)日:2023-04-04
申请号:CN202211421755.X
申请日:2022-11-14
Applicant: 鞍钢股份有限公司
IPC: C21B7/00 , G06V10/143 , G06V10/40
Abstract: 本发明提供一种基于料面热图像识别高炉塌料炉况的方法,应用料面热图像仪和图像识别技术,建立判断规则,判断与识别高炉在生产过程塌料炉况,提醒高炉操作者采取应对措施,避免对高炉稳定顺行产生严重影响。包括:在高炉炉顶安装热像仪建立炉喉料面坐标体系,把高炉炉喉截面划按坐标分成n×m个单元;以炉顶料流阀关闭作为起始,以炉顶料流阀开启布下一批炉料作为终止,炉顶热像仪每间隔一个扫描周期扫描1次料面,读取坐标(xi,θj,k)的单元温度T(xi,θj,k)和料线高度Z(xi,θj,k),从炉顶热像仪开启第2次扫描开始,每次扫描后计算每个单元下料速度和温度变化幅度,根据下料速度和温度变化幅度判断炉料下降过程是否出现塌料。
-
公开(公告)号:CN115109880A
公开(公告)日:2022-09-27
申请号:CN202210820130.4
申请日:2022-07-13
IPC: C21B7/16
Abstract: 本发明的一种气流均匀化热风围管变径高炉送风设备及方法,属于高炉送风技术领域,设备包括热风总管、热风围管、热风支管和风口,热风总管与热风围管连接,热风支管端部设有风口,热风围管为变径围管,热风围管圆周向均匀间隔设有扩大幅度相同的扩径区,设置个数为四个,包括第一扩径区、第二扩径区、第三扩径区和第四扩径区,其余位置为等径区。送风时热风经热风总管进入热风围管后,分成两股气流沿热风围管圆周运动,通过热风支管经风口将热风送至高炉内完成高炉送风。该设备结构简单,针对热风围管圆周风量较大的四个对称方位围管直径进行扩大,以均匀热风围管内热风压力分布,改善高炉各热风支管内进气量,提高高炉各风口风量分配均匀性。
-
-
-
-
-
-
-
-
-