Abstract:
[Object] The object of the invention is to present a new spectral measurement technique enabling a measurement even if light to be measured exists within a very short period. [Means for Solution] A broadband pulsed light wave L1 where wavelength shifts temporally and continuously in a pulse interferes with a light wave L0 to be measured. The intensity at each wavelength of the light wave L0 to measured is obtained by the Fourier transform of the output signal from a detector 5 that has detected the intensity of the wave resultant from the interference. A laser beam L2 from a laser source 1 is converted to a supercontinuum wave L3 by a nonlinear optical element 2. A pulse extension element 3 extends pulses of the supercontinuum wave L3, thus generating the broadband pulsed light wave L1.
Abstract:
A reconstruction matrix used for calculating a hyperspectral data-cube includes rows of periodic functions. Each row of the reconstruction matrix corresponds to a selected wavelength and each column corresponds to a selected retardance of an interferometer. The periodic functions have as a parameter the selected wavelength of the corresponding row and are sampled at the selected retardances of each of the corresponding columns. An interferogram data-cube is obtained and includes an array of one or more simultaneously measured interferograms. Each row of the interferogram data-cube corresponds to one of the selected retardances and each column corresponds to a different interferogram from the simultaneously measured interferograms. A set of matrix-vector products for each of the interferograms is formed by multiplying the reconstruction matrix with a column of the interferogram data-cube to form the hyperspectral data-cube.
Abstract:
An apparatus includes a liquid-crystal polarization interferometer that causes an optical path delay between a first and a second polarization of input light. The liquid-crystal polarization interferometer includes a liquid-crystal variable retarder that provides a variable retardance in response to a voltage applied across the liquid-crystal cell. First and second polarizers are located on opposing sides of the liquid-crystal cell. The apparatus includes an image sensor that senses interferograms based on output light that passes through the liquid-crystal polarization interferometer. The apparatus includes a color filter that filters one of the input light and the output light. The color filter has a spectral transmission characteristic that passes more light in a blue spectral region that in a red spectral region.
Abstract:
In the voice coil motor and the interference spectrophotometer according to the invention, the angular deviation between the movable and fixed mirrors can always be suppressed to one second or less. The voice coil motor is provided with: a static unit 71 including a yoke 73 having a cylindrical part 73a fixed to the static unit 71 and a magnet 74 disposed in the cylindrical part 73a fixed to the static unit71; a movable unit 72 including a circular coil 72b fixed thereto, the circular coil 72b disposed between the cylindrical part 73a of the yoke 73 and the magnet74; and a power supply line 72c for connecting the coil 72b to a power supply. The cylindrical part 73a of the yoke 73 has a slit 73c through which the power supply line 72c is to pass is created, the movable unit 72 is configured to reciprocally move relative to the static unit 71 in response to an electromagnetic force generated by the magnet 74 in conjunction with the activated coil 72b, and another slit 73d is created in the cylindrical part 73a of the yoke 73 in such a manner that the slits 73c,73d are symmetrical with respect to a central axis of the cylindrical part73a.
Abstract:
Described are a method and apparatus for high-speed phase shifting of an optical beam. A transparent plate having regions of different optical thickness is illuminated by an optical beam along a path of incidence that extends through the regions. The transparent plate can be moved or the optical beam can be steered to generate the path of incidence. The optical beam exiting the transparent plate has an instantaneous phase value according to the region in which the optical beam is incident. Advantageously, the phase values are repeatable and stable regardless of the location of incidence of the optical beam within the respective regions, and phase changes at high modulation rates are possible. The method and apparatus can be used to modulate a phase difference of a pair of coherent optical beams such as in an interferometric fringe projection system.
Abstract:
A system for determining a spectrum includes an interface and a processor. The interface is configured to receive a sample set of intensity data for an array of spatial locations and a set of spectral configurations. The processor is configured to determine a region of interest using the sample set of intensity data and determine a spectral peak for the region of interest.
Abstract:
A Spectrometer System and a Method for Compensating for Time Periodic Perturbations of an Interferogram generated by the Spectrometer System A spectrometer system (2) comprises a scanning interferometer (4); a drive system (6) mechanically coupled to a movable reflector element (14) of the scanning interferometer (4) and operable to effect reciprocation of the movable reflector element (14)at a plurality, preferably more than two, for example three, different scan speeds; a detector arrangement (8) configured to sample at equidistant time intervals an interferogram formed by the scanning interferometer (2) to generate a sampled interferogram; and a data processor (10) is adapted to acquire a sampled interferogram at each of the plurality of different scan speeds and to perform a relative comparison of the content of the so acquired plurality of sampled interferograms.
Abstract:
Systems, methods, and devices relating to optical imaging systems for gathering data on atmospheric trace gas emissions from a satellite. An optical system used in the satellite has a Fabry-Perot interferometer coupled to a suitable telescope. The interferometer is a wide angle Fabry-Perot interferometer which creates a fringing pattern in concentric circles with each fringe being a different wavelength on the imaging system. A filter is used with the optical system and allows multiple adjacent modes in a selected spectral range to pass through the interferometer to the imaging system. Each pixel in the imaging system collects light at multiple wavelengths within the selected spectral range. The optical system gathers multiple images of the target area allowing light from the target area to be collected at multiple different wavelengths. Different absorption data for different atmospheric trace gases can be gathered in a single satellite pass over the target area.