Abstract:
A fluid delivery system for delivering a metered dose of fluid from a supply tank (28) to a downstream chamber or vessel (10), comprises a pump apparatus (20) comprising a pump plunger (32) which is operable to perform a pumping stroke under the control of an electromagnetic actuator (36), including a solenoid (36a), to effect delivery of the fluid and a control unit (24) for supplying an input signal (58) to the solenoid (36a) to initiate a current flow to the solenoid (36a) and thereby initiate movement of the pump plunger (32). An electronic device (54) provides an output signal to indicate that movement of the pump plunger has stopped at the end of the pumping stroke, and a timer determines a time difference between the input signal (58) being supplied to the solenoid (36a) and the output signal being output by the electronic device (54). A processor (26) compares the time difference with a predetermined time difference and determines, as a result of the comparison, whether or not the pump plunger (32) has performed a valid pumping stroke in which an intended volume of fluid is displaced and which may therefore be used in a totalized flow calculation.
Abstract:
A free-piston linear compressor (1) controlled to achieve high volumetric efficiency by a controller including an algorithm (116) for ramping up input power until piston-cylinder head collisions are detected using a detection algorithm (117/118) which then decrements power input whereupon input power is again ramped up by algorithm (116). Non-damaging low energy collisions are achieved by the controller including a perturbation algorithm (119) which perturbates the input power ramp with periodic transient pulses of power to ensure piston collisions are provoked during the transient power pulses.
Abstract:
A compressor having a sensorless motor and a driving method thereof. The compressor includes a sensorless motor having a rotation shaft connected to a rotator, a piston for performing a compression stroke and an intake stroke between a top dead center and a bottom dead center thereof, and a crank connecting the rotation shaft to the piston. The method includes forcibly aligning the rotator such that the rotator is positioned at a start position in the intake stroke of the piston, and accelerating rotation of the forcibly aligned rotator..
Abstract:
The invention relates to a pumping system (12) for supercritical extraction comprising: inlet means adapted to be connected to a source of supercritical fluid; outlet means adapted to provide the pumped fluid to a pressure vessel (18 and 24A); and pumphead means (300) having a pumping chamber (336) communicating with said inlet means and with said outlet means; a piston (304); an inlet valve means controlling the flow of fluid into said pumping chamber (336) means through said inlet means; an outlet valve means controlling the flow of fluid from said pumping chamber means (336) through said outlet means; an inlet conduit means defining a flow path between said inlet valve and said pump chamber (336); and an outlet conduit means defining a flow path between said pump chamber (336) and said outlet valve means; characterized by an air-cooled thermoelectric-cooled heat exchanger means (386) for cooling both the inlet means and the pumphead means (300).
Abstract:
A remote adhesive monitoring system is used in connection with adhesive applied to workpieces moving along a production line. A reservoir, pump, and applicator apply the adhesive to the workpieces. A monitor control computer has an associated data processing program. A pump cycle sensor senses pump cycles. An applicator sensor senses when the adhesive is applied to the workpieces. A workpiece sensor senses the workpieces moving along the line. The monitor control uses input from the applicator sensing means and the workpiece sensor to determine an ON time per each workpiece at a predetermined speed. The monitor control uses input from the workpiece sensor and the pump cycle sensor to determine the number of workpieces per pump cycle. The monitor control calculates an ON time to TOTAL time ratio per each workpiece. The monitor control will then calculate an amount of adhesive used for the given ON time to TOTAL time ratio.
Abstract:
An example system for detecting mud pump stroke information comprises a distributed acoustic sensing (DAS) data collection system coupled to a downhole drilling system, a stroke detector coupled to a mud pump of the downhole drilling system configured to detect strokes in the mud pump and to generate mud pump stroke information based on the detected strokes, and a fiber disturber coupled to the stroke detector and to optical fiber of the DAS data collection system configured to disturb the optical fiber based on mud pump stroke information generated by the stroke detector. The system further comprises a computing system comprising a processor, memory, and a pulse detection module operable to transmit optical signals into the optical fiber of the DAS data collection system, receive DAS data signals in response to the transmitted optical signals, and detect mud pump stroke information in the received DAS data signals.
Abstract:
A free piston gas compressor comprising a cylinder (9), a piston (11) reciprocable within the cylinder (9) and a reciprocating linear electric motor derivably coupled to the piston having at least one excitation winding (1, 2). A measure of the reciprocation time of the piston (11) is obtained, any change in the reciprocation time is detected and the power input to said excitation winding (1, 2) is adjusted in response to any detected change in reciprocation time.