Abstract:
In computer vision systems that need to decode machine-readable indicia from captured imagery, it is critical to select imaging parameters (e.g., exposure interval, exposure aperture, camera gain, intensity and duration of supplemental illumination) that best allow detection of subtle features from imagery. In illustrative embodiments, a Shannon entropy metric or a KL divergence metric is used to guide selection of an optimal set of imaging parameters. In accordance with other aspects of the technology, different strategies identify which spatial locations within captured imagery should be successively examined for machine readable indicia, in order to have a greatest likelihood of success, within a smallest interval of time. A great variety of other features and arrangements are also detailed.
Abstract:
In computer vision systems that need to decode machine-readable indicia from captured imagery, it is critical to select imaging parameters (e.g., exposure interval, exposure aperture, camera gain, intensity and duration of supplemental illumination) that best allow detection of subtle features from imagery. In illustrative embodiments, a Shannon entropy metric or a KL divergence metric is used to guide selection of an optimal set of imaging parameters. In accordance with other aspects of the technology, different strategies identify which spatial locations within captured imagery should be successively examined for machine readable indicia, in order to have a greatest likelihood of success, within a smallest interval of time. A great variety of other features and arrangements are also detailed.
Abstract:
A system learns to automatically identify, and detect, contextual conditions that may serve as action triggers to help please a user (or avoid annoying a user). Among other features, a simple sensor arrangement is detailed which, in addition to producing a customary stream of high bandwidth sensor data, provides an output of low bandwidth data. This low-bandwidth data serves to identify a particular reference pattern with which the high-bandwidth sensor data is found to correspond. Such a sensor can employ reference patterns discovered through pseudo-random trials. A great number of other advantageous features and arrangements are also detailed.
Abstract:
An automatic object identification scanner is equipped with recognition units that provide detection results for objects and a controller that resolves potential conflicts in the results. One form of recognition unit detects product identifiers and flags in a digital payload that is encoded redundantly across packaging or labels applied to packaging. The controller gets detection results and evaluates them relative to a state data structure, which maintains state for identifiers obtained within a time interval, such as a timeout interval or waiting period after a detection result. Identifiers are reported to a POS system depending on logic that evaluates code priority and pending waiting periods.
Abstract:
Debug information is output from a point-of-scale scanner by disguising it as one or more product identifiers (e.g., Global Trade Item Numbers, or GTINs). Generation of such “faux GTINs” to convey the debug information can be activated by presenting a special machine readable code to the scanner. Repetitive patterns in the debug information are desirably varied to avoid triggering duplicate detection logic in the scanner, which might otherwise suppress outputting of such repetitive information.
Abstract:
Methods and arrangements involving electronic devices, such as smartphones, tablet computers, wearable devices, etc., are disclosed. One arrangement involves a low-power processing technique for discerning cues from audio input. Another involves a technique for detecting audio activity based on the Kullback-Liebler divergence (KLD) (or a modified version thereof) of the audio input. Still other arrangements concern techniques for managing the manner in which policies are embodied on an electronic device. Others relate to distributed computing techniques. A great variety of other features are also detailed.
Abstract:
In computer vision systems that need to decode machine-readable indicia from captured imagery, it is critical to select imaging parameters (e.g., exposure interval, exposure aperture, camera gain, intensity and duration of supplemental illumination) that best allow detection of subtle features from imagery. In illustrative embodiments, a Shannon entropy metric or a KL divergence metric is used to guide selection of an optimal set of imaging parameters. In accordance with other aspects of the technology, different strategies identify which spatial locations within captured imagery should be successively examined for machine readable indicia, in order to have a greatest likelihood of success, within a smallest interval of time. A great variety of other features and arrangements are also detailed.
Abstract:
Methods and arrangements involving electronic devices, such as smartphones, tablet computers, wearable devices, etc., are disclosed. One arrangement involves a low-power processing technique for discerning cues from audio input. Another involves a technique for detecting audio activity based on the Kullback-Liebler divergence (KLD) (or a modified version thereof) of the audio input. Still other arrangements concern techniques for managing the manner in which policies are embodied on an electronic device. Others relate to distributed computing techniques. A great variety of other features are also detailed.
Abstract:
Certain aspects of the present technology involve automated capture of several image frames (e.g., simultaneously in a single exposure, or in a burst of exposures), and application of a data-extraction process (e.g., watermark decoding) to each such image. Other aspects of the technology involve capturing a single scene at two different resolutions, and submitting imagery at both resolutions for watermark decoding. Still other aspects of the technology involve increasing the signal-to-noise ratio of a watermark signal by subtracting one image from another. Yet other aspects of the technology involve receiving focus distance data from a camera, and employing such data in extracting information from camera imagery. Smartphone camera APIs can be employed to simplify implementation of such methods. A great number of features and arrangements are also detailed. Embodiments of such technology can simplify image processing required for data extraction, with attendant reductions in required program memory and battery power consumption. Moreover, they can enlarge a system's operational envelope—enabling information to be extracted from imagery under conditions that lead to failure in prior art arrangements.
Abstract:
An automatic object identification scanner is equipped with recognition units that provide detection results for objects and a controller that resolves potential conflicts in the results. One form of recognition unit detects product identifiers and flags in a digital payload that is encoded redundantly across packaging or labels applied to packaging. The controller gets detection results and evaluates them relative to a state data structure, which maintains state for identifiers obtained within a time interval, such as a timeout interval or waiting period after a detection result. Identifiers are reported to a POS system depending on logic that evaluates code priority and pending waiting periods.