Abstract:
A head-mounted augmented reality stereo vision optical film, including a light transmitting display layer, an optical projection layer, and an eye tracking layer, is provided. The light transmitting display layer has multiple pixel units. The optical projection layer has multiple light guide units. The light guide unit includes a pinhole configured corresponding to at least one of the pixel units. The eye tracking layer has multiple micro sensing elements.
Abstract:
A driving method of a light emitting device including visible light emitting elements is provided. In a first visible light communication mode, a first portion of the visible light emitting elements is driven and a second portion of the visible light emitting elements is idled for the first portion of the visible light emitting elements having a first current density. In a second visible light communication mode, each of the visible light emitting elements is driven so as to have a second current density. An illumination brightness difference of the light emitting device between the first visible light communication mode and the second visible light communication mode is smaller than 15%.
Abstract:
A picking-up and placement process for electronic devices comprising: (a) providing a first substrate having a plurality of electronic devices formed thereon, the electronic devices being arranged in an array, and each of the electronic devices comprising a magnetic portion; (b) selectively picking-up parts of the electronic devices from the first substrate via a magnetic force generated from an electric-programmable magnetic module; and (c) bonding the parts of the electronic devices picked-up by the electric-programmable magnetic module with a second substrate.
Abstract:
A fabricating method of light emitting element. A substrate is provided. A plurality of first concaves and a plurality of second concaves are formed on the substrate, wherein a volume of each first concave is different from a volume of each second concave. A plurality of first light emitting diode chips and a plurality of second light emitting diode chips are provided, wherein a volume of each first light emitting diode chip is corresponding to the volume of each first concave, and a volume of each second light emitting diode chip is corresponding to the volume of each second concave. The first light emitting diode chips are moved onto the substrate such that the first light emitting diode chips go into the first concaves, and the second light emitting diode chips are moved onto the substrate such that the second light emitting diode chips go into the first concaves.
Abstract:
A semiconductor laser structure is provided. The semiconductor laser comprises a central thermal shunt, a ring shaped silicon waveguide, a contiguous thermal shunt, an adhesive layer and a laser element. The central thermal shunt is located on a SOI substrate which has a buried oxide layer surrounding the central thermal shunt. The ring shaped silicon waveguide is located on the buried oxide layer and surrounds the central thermal shunt. The ring shaped silicon waveguide includes a P-N junction of a p-type material portion, an n-type material portion and a depletion region there between. The contiguous thermal shunt covers a portion of the buried oxide layer and surrounds the ring shaped silicon waveguide. The adhesive layer covers the ring shaped silicon waveguide and the buried oxide layer. The laser element covers the central thermal shunt, the adhesive layer and the contiguous thermal shunt.
Abstract:
A display panel comprising a substrate, a meshed shielding pattern, a plurality of light-emitting devices and a solar cell is provided. The substrate has a first surface and a second surface opposite to the first surface, the substrate comprises a first circuit layer disposed over the first surface and a second circuit layer disposed over the second surface. The meshed shielding pattern is disposed on first surface of the substrate to define a plurality of pixel regions over the substrate. The light-emitting devices are disposed on the first surface of the substrate and electrically connected to the first circuit layer, and at least one of the light-emitting devices is disposed in one of the pixel regions. The solar cell is disposed on the second surface of the substrate and electrically connected to the second circuit layer.
Abstract:
A spliced display including a transparent substrate, a plurality of micro (light-emitting diodes) LEDs, and a plurality of light sensors is provided. The transparent substrate has a display surface and a back surface opposite to each other. The driving backplanes are disposed on the back surface of the transparent substrate to be spliced with each other. The micro LEDs are disposed on the driving backplanes respectively and located between the micro LEDs and the transparent substrate. Each of the driving backplanes is corresponding to parts of the micro LEDs. The light sensors are disposed on the transparent substrate and located between the driving backplanes and the transparent substrate. Each of the light sensors is adjacent to at least two of the micro LEDs, and at least one of the at least two of the micro LEDs is adjacent to two of the light sensor.
Abstract:
A head-mounted eye tracking system including an optical combiner, an eye tracker and a signal processor is provided. The optical combiner includes an optical coupler. The eye tracker is at least partially disposed on the optical combiner and is suitable for sensing an eyeball movement of a wearer. The eye tracker includes a plurality of light-emitting devices and a plurality of sensing devices. The plurality of light-emitting devices are suitable for emitting tracking beams. The plurality of sensing devices are suitable for receiving the tracking beams reflected by the eyeball of the wearer. The signal processor is signally connected to the eye tracker.
Abstract:
A spliced display including a transparent substrate, a plurality of light emitting diode modules, at least one control element and a signal transmission structure is provided. The transparent substrate has a display surface and a back surface opposite to each other. The light emitting diode modules are disposed on the back surface of the transparent substrate to be spliced with each other. Each of the light emitting diode modules includes a driving backplane and a plurality of micro light emitting diodes, and the micro LEDs are disposed in an array between the driving backplane and the transparent substrate. The control element is disposed on the transparent substrate. The control element is connected to the light emitting diode modules via the signal transmission structure, and the light emitting diode modules are connected to each other via the signal transmission structure.
Abstract:
A display array including a semiconductor stacked layer, an insulating layer, a plurality of electrode pads, and a driving backplane is provided. The semiconductor stacked layer has a plurality of light emitting regions arranged along a reference plane. The insulating layer is disposed to an outer surface of the semiconductor stacked layer and contacts the semiconductor stacked layer. The insulating layer has a plurality of openings respectively corresponding to the plurality of light emitting regions. The electrode pads are disposed to the insulating layer and are respectively electrically connect the plurality of light emitting regions through the plurality of openings. The driving backplane is disposed to the semiconductor stacked layer and electrically connected to the plurality of electrode pads, wherein a light emitting material layer of the semiconductor stacked layer has consistency along an extension direction of the reference plane.