Abstract:
This invention concerns a novel method for surface derivatization of electrode materials for Li-ion batteries. The derivatization is based on adsorption of a composite assembly consisting of amphiphilic redox active molecule attached to single walled carbon nanotube (SWCNT). Its role consists in the enhancement of electronic conductivity of electrode materials, such as phosphate olivines, without requesting any significant increase of the electrode volume and mass. The SWCNT is linked to the redox molecule via non-covalent or covalent interaction with the hydrophobic part of the molecule or electrostatic interaction. The hydrophilic part of the molecule serves as the anchoring site for surface modification of the electrode active material. The redox potential of the molecule is close to the redox potential of the electrode active material. The adsorbed assembly of redox-molecule & SWCNT thus improves the charge transfer from a current collector to the electrode active material.
Abstract:
The Photocatalytic film of semiconducting iron oxide (Fe2O3), contains an n-dopant, or a mixture of n-dopants, or a p-dopant or a mixture of p-dopants. Electrode consists of a substrate, with one or more films or photocatalytic arrangements of film of semiconducting n-doped or p-doped iron oxide (Fe2O3) e.g. on the surface of one side of the substrate or on the surface of different sides. The photoelectrochemical cell comprises electrodes with a film or with films of the n-doped or p-doped semiconducting iron oxide (Fe2O3). The semiconducting iron oxide (Fe2O3) film can be manufactured with a spray pyrolysis process or a sol gel process. The system for the direct cleavage of water with visible light, into hydrogen and oxygen the system comprises one or more of the photoelectrochemical cells with photocatalytic films. The system can be a tandem cell system, comprising the photoelectrochemical cell with the doped iron oxide (Fe2O3) film.
Abstract translation:半导体氧化铁(Fe 2 O 3 O 3)的光催化膜包含n-掺杂剂或n-掺杂剂或p-掺杂剂或混合物的混合物 的p掺杂物。 电极由具有一种或多种半导体n掺杂或p掺杂氧化铁(Fe 2 O 3 O 3)膜的膜或光催化排列的衬底组成。 在基板的一侧的表面上或不同侧的表面上。 光电化学电池包括具有膜或具有n掺杂或p掺杂半导体氧化铁(Fe 2 O 3 O 3)的膜的电极。 半导体氧化铁(Fe 2 O 3 O 3)膜可以用喷雾热解法或溶胶凝胶法制造。 用可见光将水直接切割成氢气和氧气的系统包括一个或多个具有光催化膜的光电化学电池。 该系统可以是串联电池系统,其包括具有掺杂的氧化铁(Fe 2 O 3 O 3)膜的光电化学电池。
Abstract:
A catalyst having a mixture of Ru and RuO.sub.x, wherein x is greater than 0 and equal to or less than 2, supported by a suitable metal oxide support material is suitable for the heterogeneous catalytic gas phase direct methane production from hydrogen and carbon dioxide at mild temperatures as low as 25.degree. C. and atmospheric pressure. Photo-methanation using such catalysts having photoexcitable support materials significantly increases the rate of methane production and the methane yield, yielding almost stoichiometrically quantitative amounts of methane according to the Sabatier reaction.
Abstract:
This invention concerns a lithium rechargeable electrochemical cell containing electrochemical redox active compounds in the electrolyte. The cell is composed of two compartments, where the cathodic compartment comprises a cathodic lithium insertion material and one or more of p-type redox active compound(s) in the electrolyte; the anodic compartment comprises an anodic lithium insertion material and one or more of n-type redox active compound(s) in the electrolyte. These two compartments are separated by a separator and the redox active compounds are confined only in each compartment. Such a rechargeable electrochemical cell is suitable for high energy density applications. The present invention also concerns the general use of redox active compounds and electrochemically addressable electrode systems containing similar components which are suitable for use in the electrochemical cell.
Abstract:
Mono, bis and tris(substituted 2,2'-bipyridine) complexes of iron, ruthenium, osmium or vanadium are described wherein the bipyridine is substituted by a hydroxy or alkoxy group, or a primary, secondary or tertiary amine group.
Abstract:
A dimeric composition of the formula: ##STR1## wherein L', L", L'", and L"" are each a bidentate ligand having at least one functional substituent, the ligand selected from bipyridine, phenanthroline, 2-phenylpyridine, bipyrimidine, and bipyrazyl and the functional substituent selected from carboxylic acid, ester, amide, halogenide, anhydride, acyl ketone, alkyl ketone, acid chloride, sulfonic acid, phosphonic acid, and nitro and nitroso groups. An electrochemical oxidation process for the production of the above functionally substituted bidentate ligand diaqua oxo-bridged ruthenium dimers and their use as water oxidation catalysts is described.
Abstract:
The photodissociation of water into hydrogen gas is mediated by a catalytic dispersion of fine metal particles. This dispersion is stabilized by polymers of alkylene glycols which are adsorptive to said particles and which act as protective agents in solution.
Abstract:
Electrochromic and photoelectrochromic devices using nanocrystalline semiconductor electrodes with a high specific surface area and surface-absorbed electrochromic molecules are disclosed.
Abstract:
The present invention aims at improving the catalytic activity of the metallic platinum deposited on the substrate of the counterelectrode (i.e., the cathode), so as to obtain a high value of the catalytic activity on the reduction reaction of triiodide to iodide essentially independent of the nature of the solvent used in the electrolyte. To that effect, the manufacturing process according to the invention is characterized in that said metallic platinum is deposited in the form of a plurality of spheroidal microcrystallite clusters each having a size of less than about 100 nanometers, dispersed over the surface of said substrate, and in that said deposited metallic platinum is submitted to a thermal treatment, carried out at a temperature in the range of about 375.degree. to 400 C., so as to enhance the catalytic properties of the platinum on the oxido-reduction of iodine and triiodide 3I.sub.2 +2e.fwdarw.2I.sub.3 in the redox system iodine/iodide.
Abstract:
The invention relates to a photovoltaic cell (1) comprising a substrate (2) having a support face (4) having a first electrode (6) thereon and a second electrode (10) spaced from the first electrode (6) by a plurality of layers (14, 16; 14, 24, 16) including at least one layer (14) of a semiconducting material with an active junction (J) interface thereat, said active junction (J) having a developed surface area greater than its projected surface area.