Abstract:
Provided is a semiconductor device including a transistor with large on-state current even when it is miniaturized. The transistor includes a pair of first conductive films over an insulating surface; a semiconductor film over the pair of first conductive films; a pair of second conductive films, with one of the pair of second conductive films and the other of the pair of second conductive films being connected to one of the pair of first conductive films and the other of the pair of first conductive films, respectively; an insulating film over the semiconductor film; and a third conductive film provided in a position overlapping with the semiconductor film over the insulating film. Further, over the semiconductor film, the third conductive film is interposed between the pair of second conductive films and away from the pair of second conductive films.
Abstract:
After a single crystal semiconductor layer provided over a base substrate by attaching is irradiated with a laser beam, characteristics thereof are improved by first heat treatment, and after adding an impurity element imparting conductivity to the single crystal semiconductor layer, second heat treatment is performed at lower temperature than that of the first heat treatment.
Abstract:
Stable electric characteristics and high reliability are provided to a miniaturized and integrated semiconductor device including an oxide semiconductor. In a transistor (a semiconductor device) including an oxide semiconductor film, the oxide semiconductor film is provided along a trench (groove) formed in an insulating layer. The trench includes a lower end corner portion having a curved shape with a curvature radius of longer than or equal to 20 nm and shorter than or equal to 60 nm, and the oxide semiconductor film is provided in contact with a bottom surface, the lower end corner portion, and an inner wall surface of the trench. The oxide semiconductor film includes a crystal having a c-axis substantially perpendicular to a surface at least over the lower end corner portion.
Abstract:
The present invention is characterized in that by laser beam being slantly incident to the convex lens, an aberration such as astigmatism or the like is occurred, and the shape of the laser beam is made linear on the irradiation surface or in its neighborhood. Since the present invention has a very simple configuration, the optical adjustment is easier, and the device becomes compact in size. Furthermore, since the beam is slantly incident with respect to the irradiated body, the return beam can be prevented.
Abstract:
The semiconductor device is provided in which a plurality of memory cells each including a first transistor, a second transistor, and a capacitor is arranged in matrix and a wiring (also referred to as a bit line) for connecting one of the memory cells and another one of the memory cells and a source or drain region in the first transistor are electrically connected through a conductive layer and a source or drain electrode in the second transistor provided therebetween. With this structure, the number of wirings can be reduced in comparison with a structure in which the source or drain electrode in the first transistor and the source or drain electrode in the second transistor are connected to different wirings. Thus, the integration degree of a semiconductor device can be increased.
Abstract:
Experience shows that, in a material containing oxygen as a main component, an excess or deficiency of trace amounts of oxygen with respect to a stoichiometric composition, or the like affects properties of the material. An oxygen diffusion evaluation method of an oxide film stacked body includes the steps of: measuring a quantitative value of one of oxygen isotopes of a substrate including a first oxide film and a second oxide film which has an existence proportion of an oxygen isotope different from an existence proportion of an oxygen isotope in the first oxide film in a depth direction, by secondary ion mass spectrometry; and evaluating the one of the oxygen isotopes diffused from the first oxide film to the second oxide film.
Abstract:
A highly reliable structure for high-speed response and high-speed driving of a semiconductor device, in which on-state characteristics of a transistor are increased is provided. In the coplanar transistor, an oxide semiconductor layer, a source and drain electrode layers including a stack of a first conductive layer and a second conductive layer, a gate insulating layer, and a gate electrode layer are sequentially stacked in this order. The gate electrode layer is overlapped with the first conductive layer with the gate insulating layer provided therebetween, and is not overlapped with the second conductive layer with the gate insulating layer provided therebetween.
Abstract:
To provide a highly reliable semiconductor device. To provide a semiconductor device which prevents a defect and achieves miniaturization. An oxide semiconductor layer in which the thickness of a region serving as a source region or a drain region is larger than the thickness of a region serving as a channel formation region is formed in contact with an insulating layer including a trench. In a transistor including the oxide semiconductor layer, variation in threshold voltage, degradation of electric characteristics, and shift to normally on can be suppressed and source resistance or drain resistance can be reduced, so that the transistor can have high reliability.
Abstract:
To provide a liquid crystal display device having high quality display by obtaining a high aperture ratio while securing a sufficient storage capacitor (Cs), and at the same time, by dispersing a load (a pixel writing-in electric current) of a capacitor wiring in a timely manner to effectively reduce the load. A scanning line is formed on a different layer from a gate electrode and the capacitor wiring is arranged so as to be parallel with a signal line. Each pixel is connected to the individually independent capacitor wiring via a dielectric. Therefore, variations in the electric potential of the capacitor wiring caused by a writing-in electric current of a neighboring pixel can be avoided, whereby obtaining satisfactory display images.
Abstract:
The semiconductor device is provided in which a plurality of memory cells each including a first transistor, a second transistor, and a capacitor is arranged in matrix and a wiring (also referred to as a bit line) for connecting one of the memory cells and another one of the memory cells and a source or drain region in the first transistor are electrically connected through a conductive layer and a source or drain electrode in the second transistor provided therebetween. With this structure, the number of wirings can be reduced in comparison with a structure in which the source or drain electrode in the first transistor and the source or drain electrode in the second transistor are connected to different wirings. Thus, the integration degree of a semiconductor device can be increased.