Abstract:
A method for detecting stall of a multiphase motor operated in a sinusoidal micro-stepped mode. The method comprises: a) measuring at least one phase current and/or measuring the sum of all phase currents at regular time intervals synchronous with the micro-steps, b) calculating the difference between the measured phase current at a first moment and the measured phase current of the same phase at a previous moment and/or the difference between the measured sum of all phase currents at a first moment and the measured sum of all phase currents at a previous synchronous moment, c) analyzing the series of obtained current differences so as to generate a stall detection signal.
Abstract:
Method of starting a three-phase sinusoidal BLDC motor, comprising: a) determining an initial position of the rotor; b) applying a first set of sinusoidal energizing signals to the windings, corresponding to a set of sinusoidal waveforms shifted apart by 120° and 240° sampled at a first angle (φ1); and maintaining the energizing signals for allowing the rotor to move to a first angular position; c) while maintaining the energizing signals, monitoring two of the phase currents, and determining whether a predefined condition is satisfied, comprising testing whether a ratio of two total current values is equal to a predefined value, and if true, to repeat steps b) and c), but with second and further sinusoidal energizing signals sampled at a second or further angular position, selected from a limited group of discrete angular positions.
Abstract:
A semiconductor chip for measuring a magnetic field based on the Hall effect. The semiconductor chip comprises an electrically conductive well having a first conductivity type, in a substrate having a second conductivity type. The semiconductor chip comprises at least four well contacts arranged at the surface of the well, and having the first conductivity type. The semiconductor chip comprises a plurality of buffer regions interleaved with the well contacts and having the first conductivity type. The buffer regions are highly conductive and the buffer region dimensions are such that at least part of the current from a well contact transits through one of its neighboring buffer regions.
Abstract:
A single phase motor drive circuit for driving a single phase motor, comprising: a timer unit for receiving a sensor signal indicative of an angular position of a rotor, and for providing a timing signal in phase with the sensor signal; a waveform generator for generating a waveform for energizing the motor, the waveform generator being adapted for receiving the timing signal and a configurable setting, and for generating the waveform based thereon; a configuration unit for receiving an input signal indicative of a desired motor speed, the configuration unit being adapted for generating the configurable setting as a function of the input signal, and for providing the setting to the waveform generator to dynamically configure the waveform generator. A method, an assembly and a cooling system includes the single phase motor driver circuit.
Abstract:
The invention relates to a method for the production of current sensors which comprise a plastic housing made in an IC technology. The key steps are to mount on a leadframe and wire bond semiconductor chips having Hall sensors, to place the leadframe in an injection mold, to close the injection mold with a first mold insert and to inject plastic material, wherein each semiconductor chip is packed into an intermediate casing including a flat surface having alignment structures. Then the injection mold is opened and a current conductor section is placed on the flat surface of each intermediate casing, the current conductor section having counter structures matching the alignment structures so that it is automatically aligned and held. Then the injection mold is closed with a second mold insert and plastic material injected to form the final housing of the current sensors. It is also possible to use two different injection molds.
Abstract:
An infrared sensor for temperature sensing comprises a cap covering a substrate; an IR-radiation filtering window in the cap transparent to IR radiation; a first sensing element comprising a set of N thermocouples on the substrate covered by the cap, whose hot junctions may receive radiation; a second sensing element comprising a set of N thermocouples on the substrate covered by the cap whose hot junctions may not receive radiation; first connection modules for connecting a number N1 of thermocouples of the first sensing element, second connection modules for connecting a number N2 of thermocouples of the second sensing; connecting means for connecting an output of the first connection modules of the first sensing element with an output of the second connection modules of the second sensing element, and an output of the combined outputs of the sensing elements.
Abstract:
A switching control circuit includes driving a flow of direct current through an at least partially inductive load. The switching control circuit is adapted for adjusting a control current in order to activate and/or deactivate a flow of current to a load terminal. The system comprises a timer element for initiating at least one timed adjustment of the control current during activation or deactivation of the flow of current through a first semiconductor switch of the circuit so as to anticipate a state change of a component of the switching control circuit. The controller is adapted for determining a timing for the timed adjustment in a predictive manner. A method employs the various features of the switching control circuit.
Abstract:
A method for driving a BLDC motor comprising at least three stator windings, comprising: a) determining a time period, and energizing during the time period two of the windings and leaving a third winding un-energized, based on a first motor state; b) measuring a first voltage representative for the back-EMF generated in the un-energized winding shortly before expiry of the time period; c) applying a commutation at expiry of the current time period; d) measuring a second voltage shortly after the commutation, and calculating a subsequent time period; e) repeating steps b) and c). An electrical circuit and a controller are provided for performing these methods.
Abstract:
A system comprising a motor controller for providing a plurality of first power signals and a single common second power signal to a motor module comprising a plurality of potentiometers connectable to a plurality of DC-motors. The power signals and feedback signals are sent over a wire interface having less than three wires per motor. A position feedback signal is read when a motor is being powered. The power signals may be DC-signals, pulsed or tri-state signals. The circuit may have a voltage divider consisting of two or three resistors. The actual motor position can be derived from the position feedback signals using one of two formulas or curves. A motor controller, and a method for driving a plurality of DC-motors is also disclosed.
Abstract:
A method and an apparatus for temperature compensation are described. The method includes receiving a target color point for light emitted by at least one light-emitting device, determining an operating electrical energy of the at least one light-emitting device based on a correlation of at least one temperature value of the at least one light-emitting device with the received target-color point and operating the at least one light-emitting device based on the determined operating electrical energy.