Abstract:
An electronic device includes a voice processing unit, a wireless communication unit, and a combining unit. The voice processing unit receives speech signals. The wireless communication unit sends the speech signals to a server. The server converts the speech signals into a text message. The wireless communication unit receives the text message from the server. The combining unit combines the text message and the speech signals into a combined message. The wireless communication unit further sends the combined message to a recipient. A related server is also provided.
Abstract:
The disclosure provides an electronic device and a detecting position method adapted for the electronic device. The device stores an infrared sensing mode and a capture mode. The method includes steps of: entering the infrared sensing mode in response to an input signal and capturing infrared signals from an external environment, amplifying the infrared signals and converting the infrared signals into digital signals, evaluating whether part of the infrared signals falls into a predetermined waveband, if yes, focusing on an infrared thermal source whose infrared signals fall into the predetermined waveband, switching from the infrared sensing mode to the capture mode, taking a photo of the infrared thermal source, and processing the photo to identify a position of the infrared thermal source in the photo and displaying the position of the infrared thermal source in the photo.
Abstract:
An AC voltage detection circuit includes a conversion module, a comparison module, and a prompt module. The conversion module connects to an AC power source and converts the AC voltage provided by the AC power source to an AC current, and then converts the AC current to a direct current (DC) voltage reflecting the AC voltage. The comparison module is connected to the conversion module, and compares the DC voltage with a first predetermined voltage and a second lesser predetermined voltage, and produces a control signal when the DC voltage is greater than the first predetermined voltage or less than the second predetermined voltage. The prompt module produces a prompt signal when receiving the control signal.
Abstract:
A power supply circuit includes a voltage converting module, a detecting module, a processor, and a selecting module. The voltage converting module includes at least one output port, each of which is connected to one load circuit to form a loop circuit. The detecting module can be selectively connected to a selected one of the formed loop circuits to detect at least one parameter of the loop circuit. The processor controls the selecting module to connect the detecting module to the selected loop circuit, and further determines the current of the loop circuit according to the at least one parameter.
Abstract:
An electronic load for testing stability of a power voltage of a power source under test (PSUT) includes a voltage supply device, a field effect transistor (FET), an amplification circuit, and a current sampling resistor. The amplification circuit includes a first input, a second input, and an output. The voltage supply device is connected to the first input. The second input is connected to a source electrode of the FET. The output is connected to a gate electrode of the FET. A drain electrode of the FET is connected to the PSUT. One end of the current sampling resistor is grounded, and the other end of the current sampling resistor is connected to the source electrode of the FET and the second input. The voltage supply device outputs a control voltage. The amplification circuit amplifies the control voltage and drives the FET using the amplified control voltage.
Abstract:
A resistance-measuring circuit includes a controller for outputting a PWM signal and further for adjusting the duty cycle of the PWM signal, and a sampling circuit for processing the PWM signal and transmitting the processed PWM signal to the sensor. The sampling circuit samples the signal outputted from the sensor to generate a sampled signal with the voltage thereof changing according to any change in the duty cycle of the PWM signal, and further transmits the sampled signal to the controller. The controller obtains the real-time duty cycle of the PWM signal when the voltage of the sampled signal reaches a threshold voltage, and further calculates the exact resistance of the sensor according to the obtained real-time duty cycle of the PWM signal and the threshold voltage. An electronic device with the resistance-measuring circuit is also provided.
Abstract:
A master-slave system includes a master and a slave. The master includes a first communication interface, a master controller, and a voltage meter. The voltage meter is connected to the first communication interface and the master controller. The slave includes a second communication interface, an input unit, a slave controller, and a control indicator unit. The control indicator unit is connected to the second communication interface and the slave controller. The salve controller controls voltage of a node between the control indicator unit and the second communication interface to change between a high logic level and a low logic level according to signals from the input unit. The voltage meter is connected to the control indicator unit to detect the voltage of the node. The master controller controls the master to execute a function according to change of the obtained voltage within a preset period.
Abstract:
A method for measuring size of an object is provided. The method includes controlling a distance measurement unit to measure a vertical distance between an electronic device and the object in response to a measurement operation, controlling an image capturing unit to capture an image in front of the electronic device, which includes an image of the object in response to the measurement operation. Computing an actual size of the captured area according to the distance measured by the distance measurement unit and an angle of view of the image capturing unit. In addition, obtaining the image of the object from the captured image, and further computing the proportion of the image of the object in the captured image. Then computing the size of the object according to the proportion and the actual size of the captured area, and displaying the measured size of the object.
Abstract:
The present disclosure provides an audio signal amplifying circuit for an electronic device including a processing chip and a speaker. The audio signal amplifying circuit includes an amplifying circuit and an inverting circuit connected to the processing chip to get a first control signal and invert the first control signal to generate a second control signal. The first control signal and/or the second control signal are used to control the operation mode of the amplifying circuit to be in an amplifying mode or in a non-amplifying mode.
Abstract:
A card tray ejection mechanism for an electronic device, which includes a first elongated member rotatably mounted to the base, a second elongated member, and a driving member. The first elongated member includes a first end portion resisting against a side of the tray, a second end portion opposite to the first end portion and a pivoting rod located between the first and second end portions. The second elongated member is rotatably connected to the second end portion. The driving member drives the second elongated member to move longitudinally. When the second elongated member is driven to move longitudinally by the driving member, the first elongated member is driven to rotate around the pivoting rod by the second elongated member, and the card tray is ejected. An electronic device using the card tray ejection mechanism is also provided.