Abstract:
A plug connector assembly (1) includes: a mating member (10) for receiving a mating connector; a printed circuit board (20) electrically connected with the mating member; an outer shell (60) enclosing the printed circuit board; a light member mounted on the printed circuit board; and a light pipe (50) mounted on the printed circuit board to transmit light emitted from the light member to an outer side of the outer shell; wherein the outer shell comprises at least one supporting member (624) extending inwardly to support the printed circuit board in order to prevent the printed circuit board from movement during mounting the light pipe to the printed circuit board.
Abstract:
A cable connector assembly comprising: an electrical connector including a plug portion, a printed circuit board (PCB) electrically connected to the plug portion and fixed at a rear end of the plug portion, a Light Emitting Diode (LED) lamp mounted on the PCB, a metal shell enclosing the PCB and having a receiving hole, and an optical element disposed on the plug portion in front of the LED lamp; and a cable electrically connected with the electrical connector; wherein the LED lamp has a curved sidewall facing the optical element and a rear sidewall facing the cable, an upper end of the LED lamp extending through the receiving hole of the metal shell.
Abstract:
A cable connector assembly includes a mating member (1), a cable (300) connected with the mating member, a strain relief member (4) enclosing on the cable and the mating member, a cover (6) enclosing on the strain relief member, and a retaining member (5) formed between the strain relief member and the cover. The strain relief member is made of a first type of plastic material, and the retaining member is made of a second type of plastic material, the second type of plastic material being harder than the first type of plastic material.
Abstract:
A method associated with the related structures to prepare cable wires of a cable connector, comprising the steps of: extending a first type and a second type of cable wires through a wire spacer having a notch; securing the first and second types of wires to the spacer; bending the extended cable wires of the first type in the spacer notch; operating the extended cable wires of the second type; returning the extended cable wires of the first type; and operating the extended cable wires of both the first type and the second type. The second type may be coaxial cables and the operating steps on these coaxial cables may include steps of removing outer jackets and braidings.
Abstract:
A cable connector assembly for mating with a mating connector in two directions includes a PCB, a cable, and a housing. The PCB includes a front end portion, a rear end portion, and a middle portion. The front end portion includes some front conductive pads, while the rear end portion includes some rear conductive pads. The PCB includes an upper surface and a lower surface. The cable includes some coaxial wires and single wires. All the coaxial wires are soldered on one surface, and all the single wires are soldered on another surface of the PCB. Part of the rear conductive pads soldered with the coaxial wires are electrically connected to the front conductive pads on the upper surface through a layer of conductive path, while the other rear conductive pads are electrically connected to the front conductive pads on the lower surface through another layer of conductive path.
Abstract:
A plug connector for mating with a mating connector, including: a housing, a printed circuit board (PCB) received in the housing, a number of terminals, and an insulative cover portion molded to the PCB. The PCB includes a plurality of conductive paths, an upper surface, an opposite lower surface, and a pair of side surfaces. A number of conductive pads are disposed on the upper surface and the lower surface. The conductive pads are connected with corresponding conductive paths. The terminals are electrically connected with corresponding conductive pads of the PCB. The terminals include a number of first terminals disposed on the upper surface and the lower surface of the PCB and a number of second terminals disposed on the side surfaces of the PCB. The insulative cover portion covers the PCB while exposing each of the terminals out partly for mating with the mating connector.
Abstract:
An plug connector assembly (1) includes a mating member (10) including a front mating end (101) and a rear mating end (102), a cable (30) electrically connected with the mating member, a first shell (50) formed by sheet metal drawing and having a closed circumference, a second shell (60) formed by sheet metal drawing and having a closed circumference. The first shell includes a first front end (51) telescoped with the rear mating end, and a first rear end (52) opposite to the first front end. The second shell (60) includes a second front end (61) telescoped with the first rear end, and a second rear end (62) opposite to the second front end and telescoped on the cable.
Abstract:
A cable connector assembly including: a cable including a number of wires, an insulative housing, a number of contacts retained in the insulative housing and soldered to corresponding wires of the cable, a spacer assembled to the insulative housing and retaining respective rear portions of the contacts, a metal case enclosing the insulative housing and having a slit, a copper foil enclosing the metal case and covering the slit, and an insulative member over-molded on the copper foil and a front end of the cable, wherein the spacer defines a sustaining portion extending into the slit for supporting a portion of the copper foil located above the slit.
Abstract:
A flat cable assembly includes a flat cable; a PCB electrically connected to the flat cable; and a retainer formed on the joint of the flat cable and the PCB. The flat cable defines a metallic shielding layer having extension portions formed at two sides of the flat cable, the PCB defines grounding conductive pads electrically connected to the extension portion.
Abstract:
An electrical connector assembly includes an insulative housing and a set of contacts retained in the insulative housing, the contacts including a power contact, a negative contact, a positive contact, a first grounding contact, a power provided by device (DPWR) contact, and a second grounding contact, a contacting portion of each of the set of second contacts being spaced a respective contacting distance from a front end surface of the insulative housing. A contacting distance management makes the mating connector sequentially connect with the power contact and the grounding contact, the negative contact and the positive contact, all the first contacts, the DPWR contact, the grounding contacts. Such contact arrangement is to prevent a false recognition of the two power contacts by power system circuits.