Abstract:
Present embodiments include an additive manufacturing tool configured to receive a metallic anchoring material and to supply a plurality of droplets to a part, wherein each droplet of the plurality of droplets comprises the metallic anchoring material and a mechanical oscillation system configured to mechanically oscillate a structural component of the additive manufacturing tool toward and away from the part, wherein the mechanical oscillation system comprises a motor, a cam coupled to the motor, and a piston coupled to the cam, wherein the piston is fixedly attached to the structural component.
Abstract:
A weld production knowledge system for processing welding data collected from one of a plurality of welding systems, the weld production knowledge system comprising a communication interface communicatively coupled with a plurality of welding systems situated at one or more physical locations. The communication interface may be configured to receive, from one of said plurality of welding systems, welding data associated with a weld. The weld production knowledge system may comprise an analytics computing platform operatively coupled with the communication interface and a weld data store. The weld data store employs a dataset comprising (1) welding process data associated with said one or more physical locations, and/or (2) weld quality data associated with said one or more physical locations. The analytics computing platform may employ a weld production knowledge machine learning algorithm to analyze the welding data vis-à-vis the weld data store to identify a defect in said weld.
Abstract:
An automated welding device comprises a camera, processing circuitry, a welding torch, and an electromechanical subsystem. The camera is operable to capture, using visible and/or infrared wavelengths, a high dynamic range image of one or more workpieces. The processing circuitry is operable to process the image for determination of physical characteristics of the one or more workpieces. The processing circuitry may be operable to generate, during welding of the one or more workpieces by the welding torch, electrical signals which are based on the determined physical characteristics of the one or more workpieces, and which control one or more welding parameters of the automated welding device during the welding of the one or more workpieces. The electromechanical subsystem is operable to convert the electrical signals into the one or more welding parameters of the automated welding device.
Abstract:
A welding system includes a torch motion sensing system associated with a welding torch and is configured to sense welding torch orientations or movements. The welding system also includes a processing system that is configured to vary operation of a power source based on the sensed orientations or movements.