Abstract:
A feedstock cartridge for a cold spray system including at least one powder; and a binder that interconnects at least two particles of the at least one powder.
Abstract:
A cold spray apparatus for applying a coating of particles to a substrate includes a nozzle assembly having a plurality of inner passages terminating at a common exit. The nozzle assembly includes a particle supply members in communication with the inner passages. The particle supply members supply the particles to flow and accelerate through the inner passages and out of the nozzle assembly via the common exit toward the substrate to be coated thereon. Furthermore, each inner passage includes a laser that emits a laser beam that is transmitted through the inner passage. The laser heats at least one of the particles and the substrate to promote coating of the substrate with the particles.
Abstract:
Present embodiments include an additive manufacturing tool configured to receive a metallic anchoring material and to supply a plurality of droplets to a part, wherein each droplet of the plurality of droplets comprises the metallic anchoring material and a mechanical oscillation system configured to mechanically oscillate a structural component of the additive manufacturing tool toward and away from the part, wherein the mechanical oscillation system comprises a motor, a cam coupled to the motor, and a piston coupled to the cam, wherein the piston is fixedly attached to the structural component.
Abstract:
Described herein is an apparatus for applying and curing a light-curable material on a work surface. The apparatus includes a nozzle from which the light-curable material is applied to the work surface to form a layer of light-curable material on the work surface. The layer of light-curable material has a leading edge and a trailing edge defined according to a direction of movement of the nozzle relative to the work surface. The apparatus also includes a light source fixed relative to the nozzle. The light source is operable to direct a light beam to the trailing edge of the layer of light-curable material.
Abstract:
A laser cladding device for applying a coating to a part comprising a laser which can generate laser light, which is adapted to heat the coating and the part, a main body defining a laser light channel adapted to transmit the laser light to the part, a coating channel adapted to transmit the coating to the part, and a vacuum channel and a nozzle having an exit. The nozzle comprises a delivery port at one end of the laser light channel, a coating port at one end of the coating channel, and a vacuum port at one end of the vacuum channel, wherein the vacuum port is positioned generally adjacent the delivery port In operation the vacuum port draws a vacuum, pulling the coating towards the part.
Abstract:
Laser cladding systems include a metal-filled wire comprising a metal shell surrounding a metal-filled core, wherein the metal-filled core comprises at least one of a powder metal or a fine wire metal, and, a laser that produces a laser beam directed onto at least a portion of a tip of the metal-filled wire to melt the metal shell and metal-filled core to produce a molten pool for depositing on a substrate.
Abstract:
A welding method for welding workpieces made of highly heat-resistant superalloys is provided. The method includes generating a heat input zone on the workpiece surface by means of a heat source, feeding welding filler material into the heat input zone by means of a feeding device, and generating a relative motion between the heat source and the feeding device on one hand and the workpiece surface on the other hand by means of a conveying device. Furthermore, according to the welding method, the mass feed rate is ≦350 mg/min.
Abstract:
A laser cladding device for applying a coating to a part comprising a laser which can generate laser light, which is adapted to heat the coating and the part, a main body defining a laser light channel adapted to transmit the laser light to the part, a coating channel adapted to transmit the coating to the part, and a vacuum channel and a nozzle having an exit. The nozzle comprises a delivery port at one end of the laser light channel, a coating port at one end of the coating channel, and a vacuum port at one end of the vacuum channel, wherein the vacuum port is positioned generally adjacent the delivery port. In operation the vacuum port draws a vacuum, pulling the coating towards the part.
Abstract:
A system and method for directing metal or ceramic particles toward a substrate (18) in a vacuum chamber includes a powder hopper (11), an enclosure (12) containing multiple differentially pumped vacuum chambers (19), a charging lamp (13), a tube (14), multiple charging and heating diodes 15, and an electromagnetic field generating device (EFGD) (17). The hopper (11) holds metal or ceramic particles, the chambers (19) propel the particles through the tube (14) towards substrate (18) positioned close to the tube, charging lamp (13) charges the particles, diodes (15) are used to heat the particles, and the EFGD (17) controls the direction of the particles propelled out of the tube.
Abstract:
A device for increasing the uniformity of solids within a solids fabrication system, such as a direct light fabrication (DLF) system in which gas entrained powders are passed through the focal point of a moving high-power light which fuses the particles in the powder to a surface being built up in layers. The invention provides a feed through interface wherein gas entrained powders input from stationary input lines are coupled to a rotating head of the fabrication system. The invention eliminates the need to provide additional slack in the feed lines to accommodate head rotation, and therefore reduces feed line bending movements which induce non-uniform feeding of gas entrained powder to a rotating head.