-
公开(公告)号:US20250061534A1
公开(公告)日:2025-02-20
申请号:US18819073
申请日:2024-08-29
Applicant: Intel Corporation
Inventor: Eriko Nurvitadhi , Balaji Vembu , Nicolas C. Galoppo Von Borries , Rajkishore Barik , Tsung-Han Lin , Kamal Sinha , Nadathur Rajagopalan Satish , Jeremy Bottleson , Farshad Akhbari , Altug Koker , Narayan Srinivasa , Dukhwan Kim , Sara S. Baghsorkhi , Justin E. Gottschlich , Feng Chen , Elmoustapha Ould-Ahmed-Vall , Kevin Nealis , Xiaoming Chen , Anbang Yao
IPC: G06T1/20 , G06F9/30 , G06F9/38 , G06N3/04 , G06N3/044 , G06N3/045 , G06N3/063 , G06N3/08 , G06N3/084
Abstract: One embodiment provides a parallel processor comprising a hardware scheduler to schedule pipeline commands for compute operations to one or more of multiple types of compute units, a plurality of processing resources including a first sparse compute unit configured for input at a first level of sparsity and hybrid memory circuitry including a memory controller, a memory interface, and a second sparse compute unit configured for input at a second level of sparsity that is greater than the first level of sparsity.
-
92.
公开(公告)号:US12217053B2
公开(公告)日:2025-02-04
申请号:US18528340
申请日:2023-12-04
Applicant: Intel Corporation
Inventor: Himanshu Kaul , Mark A. Anders , Sanu K. Mathew , Anbang Yao , Joydeep Ray , Ping T. Tang , Michael S. Strickland , Xiaoming Chen , Tatiana Shpeisman , Abhishek R. Appu , Altug Koker , Kamal Sinha , Balaji Vembu , Nicolas C. Galoppo Von Borries , Eriko Nurvitadhi , Rajkishore Barik , Tsung-Han Lin , Vasanth Ranganathan , Sanjeev Jahagirdar
IPC: G06F9/30 , G06F7/483 , G06F7/544 , G06F9/38 , G06N3/044 , G06N3/045 , G06N3/063 , G06N3/08 , G09G5/393 , G06F1/16 , G06F17/16 , G06N20/00 , G06T15/00
Abstract: One embodiment provides for a graphics processing unit to accelerate machine-learning operations, the graphics processing unit comprising a multiprocessor having a single instruction, multiple thread (SIMT) architecture, the multiprocessor to execute at least one single instruction; and a first compute unit included within the multiprocessor, the at least one single instruction to cause the first compute unit to perform a two-dimensional matrix multiply and accumulate operation, wherein to perform the two-dimensional matrix multiply and accumulate operation includes to compute an intermediate product of 16-bit operands and to compute a 32-bit sum based on the intermediate product.
-
公开(公告)号:US11874715B2
公开(公告)日:2024-01-16
申请号:US17966151
申请日:2022-10-14
Applicant: Intel Corporation
Inventor: Nikos Kaburlasos , Iqbal Rajwani , Bhushan Borole , Kamal Sinha , Sanjeev Jahagirdar
IPC: G06F1/00 , G06F1/28 , G06F1/3203 , G06F1/3206
CPC classification number: G06F1/28 , G06F1/3203 , G06F1/3206
Abstract: Dynamic power budget allocation in a multi-processor system is described. In an example, an apparatus includes a plurality of processor units; and a power control component, the power control component to monitor power utilization of each of the plurality of processor units, wherein power consumed by the plurality of processor units is limited by a global power budget. The apparatus is to assign a workload to each of the processor units and is to establish an initial power budget for operation of each of the processor units, and, upon the apparatus determining that one or more processor units require an increased power budget based on one or more criteria, the apparatus is to dynamically reallocate an amount of the global power budget to the one or more processor units.
-
94.
公开(公告)号:US20230394616A1
公开(公告)日:2023-12-07
申请号:US18334733
申请日:2023-06-14
Applicant: Intel Corporation
Inventor: Eriko Nurvitadhi , Balaji Vembu , Nicolas C. Galoppo Von Borries , Rajkishore Barik , Tsung-Han Lin , Kamal Sinha , Nadathur Rajagopalan Satish , Jeremy Bottleson , Farshad Akhbari , Altug Koker , Narayan Srinivasa , Dukhwan Kim , Sara S. Baghsorkhi , Justin E. Gottschlich , Feng Chen , Elmoustapha Ould-Ahmed-Vall , Kevin Nealis , Xiaoming Chen , Anbang Yao
IPC: G06T1/20 , G06N3/063 , G06F9/38 , G06F9/30 , G06N3/084 , G06N3/044 , G06N3/045 , G06N3/04 , G06N3/08
CPC classification number: G06T1/20 , G06N3/063 , G06F9/3887 , G06F9/3895 , G06F9/3001 , G06F9/3851 , G06F9/3017 , G06N3/084 , G06N3/044 , G06N3/045 , G06N3/04 , G06N3/08
Abstract: One embodiment provides a parallel processor comprising a hardware scheduler to schedule pipeline commands for compute operations to one or more of multiple types of compute units, a plurality of processing resources including a first sparse compute unit configured for input at a first level of sparsity and hybrid memory circuitry including a memory controller, a memory interface, and a second sparse compute unit configured for input at a second level of sparsity that is greater than the first level of sparsity.
-
公开(公告)号:US11748841B2
公开(公告)日:2023-09-05
申请号:US17871781
申请日:2022-07-22
Applicant: Intel Corporation
Inventor: Abhishek R. Appu , Altug Koker , John C. Weast , Mike B. Macpherson , Linda L. Hurd , Sara S. Baghsorkhi , Justin E. Gottschlich , Prasoonkumar Surti , Chandrasekaran Sakthivel , Liwei Ma , Elmoustapha Ould-Ahmed-Vall , Kamal Sinha , Joydeep Ray , Balaji Vembu , Sanjeev Jahagirdar , Vasanth Ranganathan , Dukhwan Kim
CPC classification number: G06T1/20 , G06F9/46 , G06N3/045 , G06N3/063 , G06N3/08 , G06N3/044 , G06N3/084
Abstract: A mechanism is described for facilitating inference coordination and processing utilization for machine learning. A method of embodiments, as described herein, includes limiting execution of workloads for the respective contexts of a plurality of contexts to a specified subset of a plurality of processing resources of a processing system according to physical resource slices of the processing system that are associated with the respective contexts of the plurality of contexts.
-
公开(公告)号:US11748606B2
公开(公告)日:2023-09-05
申请号:US17317857
申请日:2021-05-11
Applicant: INTEL CORPORATION
Inventor: Kamal Sinha , Balaji Vembu , Eriko Nurvitadhi , Nicolas C. Galoppo Von Borries , Rajkishore Barik , Tsung-Han Lin , Joydeep Ray , Ping T. Tang , Michael S. Strickland , Xiaoming Chen , Anbang Yao , Tatiana Shpeisman , Abhishek R. Appu , Altug Koker , Farshad Akhbari , Narayan Srinivasa , Feng Chen , Dukhwan Kim , Nadathur Rajagopalan Satish , John C. Weast , Mike B. MacPherson , Linda L. Hurd , Vasanth Ranganathan , Sanjeev S. Jahagirdar
IPC: G06F7/50 , G06N3/063 , G06N3/08 , G06N3/04 , G06T1/20 , G06F9/30 , G06T15/00 , G06F15/78 , G06F15/76 , G06F1/3287 , G06F1/3293 , G06N3/084 , G06N3/044 , G06N3/045 , G06T1/60
CPC classification number: G06N3/063 , G06F1/3287 , G06F1/3293 , G06F9/30014 , G06F9/30036 , G06F15/76 , G06F15/78 , G06N3/04 , G06N3/044 , G06N3/045 , G06N3/08 , G06N3/084 , G06T1/20 , G06T15/005 , G06T1/60
Abstract: In an example, an apparatus comprises a compute engine comprising a high precision component and a low precision component; and logic, at least partially including hardware logic, to receive instructions in the compute engine; select at least one of the high precision component or the low precision component to execute the instructions; and apply a gate to at least one of the high precision component or the low precision component to execute the instructions. Other embodiments are also disclosed and claimed.
-
公开(公告)号:US11620256B2
公开(公告)日:2023-04-04
申请号:US17732308
申请日:2022-04-28
Applicant: Intel Corporation
Inventor: Altug Koker , Joydeep Ray , Ben Ashbaugh , Jonathan Pearce , Abhishek Appu , Vasanth Ranganathan , Lakshminarayanan Striramassarma , Elmoustapha Ould-Ahmed-Vall , Aravindh Anantaraman , Valentin Andrei , Nicolas Galoppo Von Borries , Varghese George , Yoav Harel , Arthur Hunter, Jr. , Brent Insko , Scott Janus , Pattabhiraman K , Mike Macpherson , Subramaniam Maiyuran , Marian Alin Petre , Murali Ramadoss , Shailesh Shah , Kamal Sinha , Prasoonkumar Surti , Vikranth Vemulapalli
IPC: G06F12/08 , G06F15/78 , G06F9/30 , G06F9/38 , G06F17/18 , G06F12/0802 , G06F7/544 , G06F7/575 , G06F12/02 , G06F12/0866 , G06F12/0875 , G06F12/0895 , G06F12/128 , G06F12/06 , G06F12/1009 , G06T1/20 , G06T1/60 , H03M7/46 , G06F12/0811 , G06F15/80 , G06F17/16 , G06F7/58 , G06F12/0871 , G06F12/0862 , G06F12/0897 , G06F9/50 , G06F12/0804 , G06F12/0882 , G06F12/0891 , G06F12/0893 , G06T15/06 , G06N3/08
Abstract: Systems and methods for improving cache efficiency and utilization are disclosed. In one embodiment, a graphics processor includes processing resources to perform graphics operations and a cache controller of a cache coupled to the processing resources. The cache controller is configured to control cache priority by determining whether default settings or an instruction will control cache operations for the cache.
-
公开(公告)号:US20230040631A1
公开(公告)日:2023-02-09
申请号:US17881720
申请日:2022-08-05
Applicant: Intel Corporation
Inventor: Eriko Nurvitadhi , Balaji Vembu , Tsung-Han Lin , Kamal Sinha , Rajkishore Barik , Nicolas C. Galoppo Von Borries
IPC: G06T1/20 , G06F9/30 , G06F9/38 , G06F12/0811 , G06F12/0815 , G06F12/0831 , G06F12/0888 , H03M7/30 , G06K9/62 , G06N20/00 , G06F12/02 , G06F9/48 , G06F17/16 , G06N3/04 , G06N3/08 , G06T1/60 , G06T15/00
Abstract: Techniques to improve performance of matrix multiply operations are described in which a compute kernel can specify one or more element-wise operations to perform on output of the compute kernel before the output is transferred to higher levels of a processor memory hierarchy.
-
99.
公开(公告)号:US20220357945A1
公开(公告)日:2022-11-10
申请号:US17834482
申请日:2022-06-07
Applicant: Intel Corporation
Inventor: Himanshu Kaul , Mark A. Anders , Sanu K. Mathew , Anbang Yao , Joydeep Ray , Ping T. Tang , Michael S. Strickland , Xiaoming Chen , Tatiana Shpeisman , Abhishek R. Appu , Altug Koker , Kamal Sinha , Balaji Vembu , Nicolas C. Galoppo Von Borries , Eriko Nurvitadhi , Rajkishore Barik , Tsung-Han Lin , Vasanth Ranganathan , Sanjeev Jahagirdar
Abstract: One embodiment provides a graphics processor comprising a memory controller and a graphics processing resource coupled with the memory controller. The graphics processing resource includes circuitry configured to execute an instruction to perform a matrix operation on first input including weight data and second input including input activation data, generate intermediate data based on a result of the matrix operation, quantize the intermediate data to a floating-point format determined based on a statistical distribution of first output data, and output, as second output data, quantized intermediate data in a determined floating-point format.
-
公开(公告)号:US11430082B2
公开(公告)日:2022-08-30
申请号:US17143805
申请日:2021-01-07
Applicant: Intel Corporation
Inventor: Abhishek R. Appu , Altug Koker , John C. Weast , Mike B. Macpherson , Linda L. Hurd , Sara S. Baghsorkhi , Justin E. Gottschlich , Prasoonkumar Surti , Chandrasekaran Sakthivel , Liwei Ma , Elmoustapha Ould-Ahmed-Vall , Kamal Sinha , Joydeep Ray , Balaji Vembu , Sanjeev Jahagirdar , Vasanth Ranganathan , Dukhwan Kim
Abstract: A mechanism is described for facilitating inference coordination and processing utilization for machine learning at autonomous machines. A method of embodiments, as described herein, includes detecting, at training time, information relating to one or more tasks to be performed according to a training dataset relating to a processor including a graphics processor. The method may further include analyzing the information to determine one or more portions of hardware relating to the processor capable of supporting the one or more tasks, and configuring the hardware to pre-select the one or more portions to perform the one or more tasks, while other portions of the hardware remain available for other tasks.
-
-
-
-
-
-
-
-
-