Abstract:
A method and apparatus for minimizing redundant enhanced uplink (EU) allocation requests and fault-isolating EU transmission failures that occur between a wireless transmit/receive unit (WTRU) and a Node-B. The WTRU transmits an enhanced dedicated channel (E-DCH) allocation request to the Node-B over an uplink (UL) EU channel. In one embodiment, if E-DCH allocation cannot be provided within a predetermined time period, the Node-B sends an acknowledgement message to the WTRU via a downlink (DL) EU signaling channel without sending E-DCH allocation information. The request is queued in the Node-B and the WTRU refrains from transmitting the same request until after the time period expires or resources become available. In another embodiment, appropriate actions are taken to correct EU transmission failures by determining whether an E-DCH allocation request was unsuccessfully delivered via the UL EU channel or whether channel allocation information was unsuccessfully delivered via the DL EU signaling channel.
Abstract:
A method and system for performing handover in a third generation (3G) long term evolution (LTE) system are disclosed. A source evolved Node-B (eNode-B) makes a handover decision based on measurements and sends a handover request to a target eNode-B. The target eNode-B sends a handover response to the source eNode-B indicating that a handover should commence. The source eNode-B then sends a handover command to a wireless transmit/receive unit (WTRU). The handover command includes at least one of reconfiguration information, information regarding timing adjustment, relative timing difference between the source eNode-B and the target eNode-B, information regarding an initial scheduling procedure at the target eNode-B, and measurement information for the target eNode-B. The WTRU then accesses the target eNode-B and exchanges layer 1/2 signaling to perform downlink synchronization, timing adjustment, and uplink and downlink resource assignment based on information included in the handover command.
Abstract:
A wireless communication method and system for controlling an enhanced uplink (EU) radio access bearer (RAB). The wireless communication system includes at least one wireless transmit/receive unit (WTRU), at least one Node-B and a radio network controller (RNC). The RNC configures an EU RAB to operate on an enhanced dedicated channel (E-DCH). At least one of the WTRU and the Node-B report EU traffic statistics and EU performance statistics to the RNC. The RNC then adjusts the configuration of the EU RAB in accordance with the received EU traffic statistics, the EU performance statistics, and information collected by the RNC itself.
Abstract:
A method and apparatus may be used for supporting multiple hybrid automatic repeat request (H-ARQ) processes per transmission time interval (TTI). A transmitter and a receiver may include a plurality of H-ARQ processes. Each H-ARQ process may transmit and receive one TB per TTI. The transmitter may generate a plurality of TBs and assign each TB to a H-ARQ process. The transmitter may send control information for each TB, which may include H-ARQ information associated TBs with the TBs. The transmitter may send the TBs using the associated H-ARQ processes simultaneously per TTI. After receiving the TBs, the receiver may send feedback for each of the H-ARQ processes and associated TBs indicating successful or unsuccessful receipt of each of the TBs to the transmitter. The feedback for multiple TBs may be combined for the simultaneously transmitted H-ARQ processes, (i.e., TBs).
Abstract:
A user equipment (UE) includes circuitry configured to receive control information on a downlink control channel from a base station. The control information indicates an allocation of an uplink channel and the control information is sent in response to the base station determining that the UE is to send an adaptive modulation and coding report. The circuitry is further configured in response to the control information to transmit a communication in the allocated uplink channel in a time interval including at least one time slot. The communication includes an adaptive modulation and coding report, and a transmission power level of the communication is derived from the control information and a pathloss measured by the UE.
Abstract:
A method and system for performing handover in a third generation (3G) long term evolution (LTE) system are disclosed. A source evolved Node-B (eNode-B) makes a handover decision based on measurements and sends a handover request to a target eNode-B. The target eNode-B sends a handover response to the source eNode-B indicating that a handover should commence. The source eNode-B then sends a handover command to a wireless transmit/receive unit (WTRU). The handover command includes at least one of reconfiguration information, information regarding timing adjustment, relative timing difference between the source eNode-B and the target eNode-B, information regarding an initial scheduling procedure at the target eNode-B, and measurement information for the target eNode-B. The WTRU then accesses the target eNode-B and exchanges layer 1/2 signaling to perform downlink synchronization, timing adjustment, and uplink and downlink resource assignment based on information included in the handover command.
Abstract:
A code division multiple access (CDMA) communication device comprises a medium access controller (MAC) configured to receive data from a plurality of channels. Each channel is associated with a priority and an identifier. The MAC is further configured to multiplex the data of the plurality of channels for transmission over a CDMA channel based on the priority.
Abstract:
A system and method which permit the RNC to control purging of data buffered in the Node B. The RNC monitors for a triggering event, which initiates the purging process. The RNC then informs the Node B of the need to purge data by transmitting a purge command, which prompts the Node B to delete at least a portion of buffered data. The purge command can include instructions for the Node B to purge all data for a particular UE, data in one or several user priority transmission queues or in one or more logical channels in the Node B, depending upon the particular data purge triggering event realized in the RNC.
Abstract:
A wireless communication method and system for controlling the current data bit rate of a radio link (RL) to maintain the quality of the RL. The system includes a core network (CN), a radio network controller (RNC) and at least one wireless transmit/receive unit (WTRU). The RL is established between the RNC and the WTRU. The RNC establishes a guaranteed data bit rate, a maximum data bit rate and a current data bit rate associated with the RL. When the RNC senses an event which indicates that the quality of the RL has substantially deteriorated, the RNC reduces the value of the current data bit rate. Then, in a recovery process, if a similar event does not occur during an established waiting period, the RNC restores the current data bit rate back to the maximum data bit rate.
Abstract:
A method and apparatus are disclosed relating to ciphering and de-ciphering of packet units in wireless devices during retransmission in wireless communications. The packet units are re-segmented with the ciphering done on the re-segmented packet unit or on a radio link control protocol data unit (RLC PDU) with or without segmentation. Alternatively, the re-segmentation is done on the radio link control service data unit (RLC SDU) with or without segmentation. Alternatively, the ciphering process and multiplexing of the RLC PDU is done in the medium access control (MAC) layer of a MAC PU before undergoing a hybrid automatic repeat request (HARQ) process for retransmission. Further, the ciphering process in the RLC is done on a packet data convergence protocol packet data unit (PDCP PDU).