Abstract:
An integrated type semiconductor device that is capable of reducing cost or improving the reliability of connecting semiconductor chips together or chips to a circuit board. One embodiment of such an integrated type semiconductor device comprises a first semiconductor device (10) having a semiconductor chip (12) with electrodes (16), a stress-relieving layer (14) prepared on the semiconductor chip (12), a wire (18) formed across the electrodes (16) and the stress-relieving layer (14), and solder balls (19) formed on the wire (18) over the stress-relieving layer (14); and a bare chip (20) as a second semiconductor device to be electrically connected to the first semiconductor device (10).
Abstract:
This is a semiconductor device, a method of the same, a circuit board, and a flexible substrate that are easy to handle, enable quality assurance, and also enable batch connection of a flexible substrate to the electrodes of a semiconductor chip. A gap preservation member 16 is provided on a surface, of a flexible substrate 12, on which connection portions 24 to electrodes 14 of a semiconductor chip 10 are disposed. The semiconductor chip 10 and the flexible substrate 12 are arranged in a state in which the gap preservation member 16 is interposed therebetween. The connection portions 24 provided on the flexible substrate 12 are connected to the electrodes 14 of the semiconductor chip 10, and a molding material is injected to provide a stress absorption layer 26.
Abstract:
A semiconductor device and method for fabricating a semiconductor device. Semiconductor chips are affixed by an adhesive to a tape carrier on which bonding portions are formed in a matrix. Electrodes formed on the semiconductor chips are electrically connected to the bonding portions. The tape carrier is then divided into individual units for each of the semiconductor chips.
Abstract:
A semiconductor device comprises: a support member (20) on which a land (24) is formed; a semiconductor chip (10) having a bump for an electrode (12) that is disposed on the land (24), and to be bonded face-down to a support member (20); and resin (30) which is provided as an adhesive between the semiconductor chip (10) and the support member (20), which is allowed to contract on hardening, and which causes pressure-bonding between the land (24) and the bump (12) by the stress due to this hardening contraction. The stress therein is partially absorbed by elastic deformation of at least the support member (20).
Abstract:
A semiconductor device comprising a flexible substrate having an interconnecting pattern, an anisotropic conductive material arranged on a surface of the flexible substrate on which the interconnecting pattern is provided, a semiconductor chip provided with electrodes connected to the interconnecting pattern through the anisotropic conductive material, and a support member which is applied to the flexible substrate and secures the flatness. The anisotropic conductive material is provided so as to extend outside the semiconductor chip, and the support member is bonded to the flexible substrate via the anisotropic conductive material.
Abstract:
A semiconductor device comprising: a semiconductor element having a plurality of electrodes; a passivation film formed on the semiconductor element in a region avoiding at least a part of each of the electrodes; a conductive foil provided at a given spacing from the surface on which the passivation film is formed; an external electrodes formed on the conductive foil; intermediate layer formed between the passivation film and the conductive foil to support the conductive foil; and wires electrically connecting the electrodes to the conductive foil; wherein a depression tapered in a direction from the conductive foil to the passivation film if formed under a part of the conductive foil that includes the connection with the external electrodes.
Abstract:
This is a semiconductor device made by using a film carrier tape and method of making the same, wherein the package size is close to the chip size and connection portions for electrodes of a semiconductor chip are not exposed. Electroplating is performed in a state where connection leads 24, plating leads 26 and plating electrodes 28 are all conductive, the connection leads being are formed within a region to be filled with a molding material 36 and being connected to electrodes 42 of a semiconductor chip 40 and pad portions 22, the plating leads 26 being connected to the connection leads 24, and plating electrodes 28 being connected to the plating leads 26. The connection portions 29 are punched out into the region to be filled with the molding material, the connection leads 24 and the electrodes 42 are connected, and the molding material 36 is poured in. The end surfaces of the connection leads 24 that are exposed from the holes 32 are also covered by the molding material 36 so as not to be exposed.
Abstract:
A semiconductor device for surface-mounting that allows of easy mounting. It comprises a semiconductor element 16, an insulating film 12, a wiring pattern 20 formed on a first surface of the insulating film 12 and connected to the semiconductor element 16, bumps 14 formed on the reverse side of the wiring pattern 20 and projecting through holes 12a formed in the insulating film 12 to the second surface of the insulating film 12, and a support plate 24 being electrically conductive and adhered so as to cover the wiring pattern 20 on the first surface of the insulating film 12 and acting as a planarity maintaining member. The support plate 24 is connected to a constant potential portion of the wiring pattern 20.
Abstract:
A new mounting technology allows an optical transducer or semiconductor device to be mounted on a printed wiring board at high density, simply, and at low cost. When a sealed assembly is mounted on a printed wiring board (400), an opening portion (340) is provided in a portion of the printed wiring board. Conductive junction portions (360b and 360c) are provided on the surface of a base member (100). Then, the mounting is carried out by face-down bonding. The opening portion is provided in the printed wiring board, so that at least a portion of a sealing member of the sealed assembly is inserted in the opening portion. Such a structure makes face-down bonding possible, since the thickness of the sealing member of the sealed assembly and the thickness of the printed wiring board are adjusted by inserting the sealed assembly into the printed wiring board.
Abstract:
A semiconductor device comprises an electrically insulating film having a device hole; a plurality of groups of leads, each group including of a large number of leads arranged in a predetermined pattern, in a plurality of lead formation regions on the surface of the film; an integrated circuit chip positioned within the device hole and with electrodes connected to inner lead portions of the leads; and a resin sealing portion that seals in at least the integrated circuit chip, the film, and the lead groups. The film comprises a first group of aperture portions including of aperture portions provided in regions outside the lead formation regions and a second group of aperture portions consisting of a plurality of aperture portions provided in the lead formation regions.