Abstract:
Systems and methods for detecting the presence of biomolecules in a sample using biosensors that incorporate resonators which have functionalized surfaces for reacting with target biomolecules. In one embodiment, a device includes a piezoelectric resonator having a functionalized surface configured to react with target molecules, thereby changing the mass and/or charge of the resonator which consequently changes the frequency response of the resonator. The resonator's frequency response after exposure to a sample is compared to a reference, such as the frequency response before exposure to the sample, a stored baseline frequency response or a control resonator's frequency response.
Abstract:
Embodiments of the invention relate to a mobile computing device with ambient energy harvesting capability. Embodiments of the invention, when manually operated by a user, convert the kinetic motion of a part of the user's hand, applied onto a controller of the device, to electrical energy. The energy can be used to power the device, or to charge the battery of the device. Embodiments of the invention include an electrical power storage device disposed in a housing, a display screen attached to the housing to display a plurality of user-interactive interfaces, and a manually operable input controller interactable with the interfaces and being coupled to an energy transformer in the housing to electrically charge the power storage device when operated.
Abstract:
An apparatus comprising a substrate, a heater formed on the substrate, and a phase-change layer formed on the heater. The heater comprises a heater layer and first and second electrodes electrically coupled to the heater layer. A process comprising forming a heater on a substrate and forming a phase-change layer on the heater. The heater comprises a heater layer and first and second electrodes electrically coupled to the heater layer.
Abstract:
A device to detect polarization of a ferroelectric material comprises a probe tip, a charge amplifier electrically connected with the probe tip to convert a charge coupled to the probe tip from the ferroelectric material into an output voltage. The ferroelectric material is oscillated at a reference signal so that a charge is coupled to the probe tip and converted to an output voltage by the charge amplifier. A lock-in amplifier that receives the reference voltage and applies the reference voltage to the output voltage to extract a signal output representing the polarization.
Abstract:
An arrangement, a method and a system to read information stored in a layer of ferroelectric media. The arrangement includes a layer including a ferroelectric media having one or more ferroelectric domains holding bit charges, a domain corresponding to information; a probe having a tip, wherein the media and the tip are adapted to move relative to one another such that the tip scans the ferroelectric domains of the media while applying a contact force to the domains to generate a direct piezoelectric effect within the domains; and circuitry coupled to the tip and adapted to generate a signal in response to an electrical coupling between the tip and the domains while scanning the tip in contact with the domains, the signal corresponding to a readout signal for ferroelectric bit charges stored in the media
Abstract:
Using controlled bias voltage for data retention enhancement in a ferroelectric media is generally described. In one example, an apparatus includes a ferroelectric film including one or more domains, the ferroelectric film having a first surface and a second surface, the first surface being opposite the second surface, an electrode coupled with the first surface, and an electrically conductive thin film coupled with the second surface wherein the electrically conductive thin film is sufficiently conductive that a controlled bias field applied between the electrically conductive thin film and the electrode is sufficient to grow, shrink, or actively maintain the size of the one or more domains disposed between the electrically conductive thin film and the electrode.
Abstract:
An information storage device comprises a ferroelectric media, write circuitry to provide a first signal and a second signal to the ferroelectric media, a tip platform and a cantilever operably associated with the tip platform. A tip extends from the cantilever toward the ferroelectric media and includes a first conductive material communicating the first signal from the write circuitry to the ferroelectric media and a second conductive material communicating the second signal from the write circuitry to the ferroelectric media. A insulating material arranged between the first conductive material and the second conductive material to electrically isolate the first conductive material from the second conductive material.
Abstract:
Methods and associated structures of forming a microelectronic device are described. Those methods may forming a conductive layer on a substrate, patterning the conductive layer, forming at least one nanodot on the patterned conductive layer, and forming a thin film ferroelectric material on the at least one nanodot.
Abstract:
An electromechanical switch includes an actuation electrode, an anchor, a cantilever electrode, a contact, and signal lines. The actuation electrode and anchor are mounted to a substrate. The cantilever electrode is supported by the anchor above the actuation electrode. The contact is mounted to the cantilever electrode. The signal lines are positioned to form a closed circuit with the contact when an actuation voltage is applied between the actuation electrode and the cantilever electrode causing the cantilever electrode to bend towards the actuation electrode in a zipper like movement starting from a distal end of the cantilever electrode.
Abstract:
A method of fabricating microelectronic dice by providing or forming a first encapsulated die assembly and a second encapsulated die assembly. Each of the encapsulated die assemblies includes at least one microelectronic die disposed in a packaging material. Each of the encapsulated die assemblies has an active surface and a back surface. The encapsulated die assemblies are attached together in a back surface-to-back surface arrangement. Build-up layers are then formed on the active surfaces of the first and second encapsulated assemblies, preferably, simultaneously. Thereafter, the microelectronic dice are singulated, if required, and the microelectronic dice of the first encapsulated die assembly are separated from the microelectronic dice of the second encapsulated die assembly.