Abstract:
A dual force plate system having two independent measurement surfaces is disclosed herein. The dual force plate system includes a first plate component having a first measurement surface for receiving a first portion of a body of a subject, a second plate component having a second measurement surface for receiving a second portion of the body of the subject, a first force transducer element operatively coupled to the first plate component, a second force transducer element operatively coupled to the second plate component, and a third force transducer element operatively coupled to both the first plate component and the second plate component. A force plate system for computing a center of gravity of a subject is also disclosed herein. In addition, a method for determining the center of gravity for a subject disposed on a force measurement assembly is described herein.
Abstract:
A system for control of a prosthetic device includes at least one Inertial Measurement Unit detecting orientation of a user's foot. The at least one Inertial Measurement Unit is in communication with a device module configured to command at least one actuator of a prosthetic device. The at least one Inertial Measurement unit sends output signals related to orientation of the user's foot to the device module and the device module controls the at least one actuator of the prosthetic device based on the signals from the at least one Inertial Measurement Unit. The device module controls movement of an endpoint of the device within a movement envelope. The device module commanding movement of the end point within the movement envelope through at least simultaneous and/or independent actuation of the plurality of actuators based on the at least one body input signal in accordance with a movement function to achieve the desired directional movement of the endpoint within the movement envelope.
Abstract:
A visual therapy system is provided that includes a computer, a projector, a display, and input devices, including a head sensor remote, a sensor bar, a balance board, hand controlled remote, and a head sensor. The system uses an interactive interface and blue tooth software that combines remotes, an interactive balance board and infra-red head sensors. The system provides specialized therapy modules which may be based on the concept of Top Down Processing and may be designed to enhance ocular motor control, visuomotor and binocular performance while integrating vision, auditory, proprioception, balance and visuomotor control.
Abstract:
A system and method is disclosed herein for measuring bone slope or tilt of a prepared bone surface of the muscular-skeletal system. The system comprises a three-axis accelerometer for measuring position, rotation, and tilt. In one embodiment, the three-axis accelerometer can be housed in a prosthetic component that couples to a prepared bone surface. The system further includes a remote system for receiving, processing, and displaying quantitative measurements from one or more sensors. A bone is placed in extension. The three-axis accelerometer is referenced to a bone landmark of the bone when the bone is in extension. The three-axis accelerometer is then coupled to the prepared bone surface with the bone in extension. The slope or tilt of the bone surface is measured. In the example, the slope or tilt of the bone surface corresponds to at least one surface of the prosthetic component attached thereto.
Abstract:
A system is disclosed herein for providing a kinetic assessment and preparation of a prosthetic joint comprising one or more prosthetic components. The system comprises a prosthetic component including sensors and circuitry configured to measure load, position of load, and joint alignment. The system further includes a remote system for receiving, processing, and displaying quantitative measurements from the sensors. The kinetic assessment measures joint alignment under loading that will be similar to that of a final joint installation. The kinetic assessment can use trial or permanent prosthetic components. Furthermore, adjustments can be made to the applied load magnitude, position of load, and joint alignment by various means to fine-tune an installation. The kinetic assessment increases both performance and reliability of the installed joint by reducing error that is introduced by elements that load or modify the joint dynamics not taken into account by prior assessment methods.
Abstract:
To provide a motor function evaluation device and a motor function evaluation method capable of evaluating a motor function of a subject comprehensively and easily. A motor function evaluation device 1 of the present invention includes a measurement base 11, a load measurement unit 14 that measures load change over time of the subject applied to the measurement base 11, and an arithmetic unit 24 that determines a balance ability indicator of the subject determined by the load change over time measured by the load measurement unit 14. The arithmetic unit 24 determines the balance ability indicator from a time interval from when the subject stands up and the load applied to the load measurement unit 14 is maximized until when the load variation is stabilized.
Abstract:
An insole can include: an upper conductive ground plane layer; an upper compressible insulating layer physically coupled to the upper conductive ground plane layer; a conductive sensor layer physically coupled to the upper compressible insulating layer, the conductive sensor layer comprising one or more sensors are configured to a force applied to the insole by the foot; a lower compressible insulating layer physically coupled to conductive sensor layer; a lower conductive ground plane layer physically coupled to the lower compressible insulating layer and electrically coupled to the upper conductive ground plane layer; and at least one computational unit communicatively coupled to the one or more sensors. The upper conductive ground plane layer and the lower conductive ground plane layer are configured to substantially electrically shield the upper compressible insulating layer, the conductive sensor layer, and the lower compressible insulating layer from the shoe and the foot. Other embodiments are disclosed.
Abstract:
Analog electrical and pressure data obtained by an EEG/pressure sensor matrix from the subject are sent to a signal processing module that derives digital EEG data from the electrical signal and pressure data without using sensors attached to a subject's head. The pressure data are used as a secondary signal to measure the physical orientation of the subject's head. The physical orientation is used to transform the derived EEG signal to a known coordinate axis (the orientation of the subject's head) to obtain useful, consistent, and accurate EEG data. The EEG may be used to determine a sleep state of a subject and to awaken the subject while in a particular state.
Abstract:
A sensor system is adapted for use with an article of footwear and includes an insert member including a first layer and a second layer, a port connected to the insert and configured for communication with an electronic module, a plurality of force and/or pressure sensors on the insert member, and a plurality of leads connecting the sensors to the port.
Abstract:
A weight shift feedback apparatus senses a weight shift in a golf swing motion of the user, collects, synchronizes and stores the sensed weight shift information, analyzes a weight value applied to each foot of the user with respect to time based on the stored data, and extracts important points of a swing. The weight shift of the user may be evaluated based on an address point, a backswing top point, an impact point, and a point where the weight value applied to each foot has a maximum value, and the feedback information for the evaluation may be provided to the user.