Abstract:
The present invention relates to a microcapsule having a core material encapsulated with a capsule wall obtained by coagulating the fine colloidal particles by using an electrolyte, and a process for producing such microcapsules. In the present invention, inorganic and/or organic colloidal particles are used as the wall material and such particles are coagulated by using an electrolyte to form the capsule wall, so that it is possible to produce the microcapsules under mild conditions and with simple operations, and in addition, even the physically and/or chemically instable core materials can be easily encapsulated.
Abstract:
A process for producing alginate capsules comprises slowly introducing an aqueous alginate solution into crosslinking solution of a polyvalent metal salt. The aqueous alginate solution has mannuronic units (M) and guluronic units (G) in a molar ratio between 0.4 and 1.9 and preferably an amount of (G) blocks greater than 50%. Preferably, the alginate is a sodium alginate having a viscosity, in a 0.5% solution in water at 25.degree. C., lower than 20 mPa.s measured with a TV Contraves viscosimeter having a No. 1 measurement body in the presence of a calcium chelate. The alginate concentration is between 0.2 and 2 weight percent. The polyvalent metal salt concentration in solution is from 3.4.times.10.sup.-3 to 6.8.times.10.sup.-2 M. The alginate capsules are employed in cosmetic compositions.
Abstract:
Apparatus for generating seeds includes a seed supply portion having a rotating drum with a small aperture for attracting a seed by vacuum created inside the drum and which is broken at a predetermined rotational position, and a gel-coating portion having a cylindrical cutting plunger disposed inside of a nozzle body for opening and closing a gel flow channel and forming a gel-coating layer. A curing vessel having a curing agent flow channel and a spray nozzle for washing the coated seeds are also provided.
Abstract:
A method of gel-coating a seed comprises opening and closing a gel flow channel in a nozzle main body containing a gel therewithin by a cutting plunger, forming a gel-coating layer by opening a valve, supplying a seed contained in a seed storing vessel through the inside of said cutting plunger to the gel-coating layer thereby gel-coating the seed, and then falling the gel-coated seed into a curing vessel by closing the valve. A gel-coating apparatus included a seed supply portion comprising a rotational drum having a small aperture for attracting a speed by vacuum created inside which is broken at a predetermined rotational position by an aperture closing member and a gel-coating portion having a cylindrical cutting plunger disposed at the inside of a nozzle main body for opening and closing a gel flow channel and means for the supplying the gel into the gel flow channel.
Abstract:
Providing a water slurry containing an immobilizing agent and an insoluble substance, such as calcium citrate, effective to cause gelation of the immobilizing agent. The water slurry is then contacted with a hydrophobic liquid, such as a vegetable oil under conditions leading to the formation of a dispersion of droplets of the water slurry in the hydrophobic liquid. The droplets gel to form microspheres by adding an oil-soluble organic acid, such as acetic acid to the dispersion containing the droplets. Possibility of producing microspheres which are very small and are constituted of nearly perfect spheres. If desired the method can be adapted to produce microspheres containing immobilized material.
Abstract:
A core material such as viable cells is encapsulated by gelling an alginate polymer with a polyvalent cation to form shape-retaining gelled masses containing the core material, expanding and hydrating the gelled masses by contacting the masses with an aqueous saline solution, and forming a membrane about the expanded gelled massed to form capsules by contacting the gelled masses with a polycationic polymer having a molecular weight greater than 3,000 daltons. Expanding before membrane formation, permits better control of permeability properties and uniformity of the membrane. The gelled masses within the membrane may be liquified by contacting the capsules with a chelating agent which is preferably ethylene glycol bis-(.beta.-amino ethyl ether)-N,N-tetra-acetic acid. A second membrane layer may be formed by contacting the capsules with a second polycationic polymer. The second membrane may be coated with a polyanionic polymer such as alginate.
Abstract:
Microcapsules particularly those less than 300 microns in size are provided which are adapted for injection by conventional means to afford controlled release of the encapsulated drug material, such as a narcotic antagonist, an antibiotic or the like, over a prolonged period. The microcapsules are characterized by a solid core material of a solid, injectable drug material and a wall material engulfing the core material and composed of a polymer material such as a bioabsorbable polymer material. The microcapsules are made by providing a system containing a mixture of particles of a solid, injectable drug material and a solution of a bioabsorbable polymer material in a solvent in which the drug material is substantially insoluble. The system is treated to induce phase separation of the bioabsorbable polymer material from the solution by the addition to the system of a phase separation agent at a temperature at least as low as -30.degree. C. Phase separation may also be carried out at room temperature, but in either event, isolation of the microcapsules formed during the phase separation should be carried out at a temperature at least as low as -30.degree. C. The system is maintained in an agitated condition until the walls of the microcapsules constituted by the bioabsorbable polymer are substantially solidified in order to avoid aggregation or agglomeration of the microcapsules into larger capsules. The microcapsules are ready for injection, for example by being suspended in an aqueous suspending medium, upon being isolated from the system.
Abstract:
Ethylcellulose microcapsules, wherein a polymer material which shows at least 1.2 times increase in weight by immersing it in water at 37.degree. C. is incorporated into the ethylcellulose coating walls and/or the core material thereof, are disclosed. Said ethylcellulose microcapsules show rapid release of the core material in digestive organs such as stomach.
Abstract:
Tissue cells such as islet of Langerhans cells or liver cells are encapsulated within a spheroidal semipermeable membrane comprising a polysaccharide having acidic groups cross-linked with a polymer having a molecular weight greater than 3,000. The cells within the microcapsules are viable, healthy, physiologically active and capable of ongoing metabolism. The encapsulated cells are useful for implantation in a mammalian body to produce substances and effect chemical changes characteristic of the cells in vivo tissue.
Abstract:
A process for preparing ethylcellulose microcapsules of a pharmaceutically active compound by phase separation-coacervation of the ethylcellulose is disclosed. In this process, phospholipids are used as a phase-separation-inducing agent.