Abstract:
An aircraft, particularly a solar powered, high altitude, long endurance, unmanned aerial vehicle, is equipped with a combination of canted down, raked back wing tips and trailing “tip tails” carried on booms from the tip regions of the mainplane. Each tip tail is positioned to be subject to the upwash field of the respective wing tip vortex, at least in the cruise condition of the aircraft. The wing tip form can achieve a reduction in induced drag and help to relieve wing root bending moment while the tip tails can act through their connections to the mainplane to provide torsional relief to the latter, particularly under lower incidence/higher speed conditions. In the higher incidence/lower speed cruise condition, however, the presence of the tip tails in the upwash fields of the wing tip vortices means that they can generate lift with a component in the forward direction of flight and hence contribute to the thrust requirements of the aircraft.
Abstract:
A layered architecture for customer payload systems is disclosed to provide a scalable, reconfigurable integration platform targeted at multiple unmanned aerial vehicles (UAV), and remove both UAV specific and payload equipment specific characteristics that increase complexity during integration. The layered architecture is a modular design architecture that is split by function. Standard interfaces are implemented between functional layers to increase reconfiguration possibilities and to allow reuse of existing components and layers without modification to the payload or UAV. The standard interfaces also promote easy connection and disconnection from other layer components. Additionally, once the layered architecture is implemented, technological or functional requirements changes can be isolated to one specific component layer, not the entire payload stack. As a result, payload designs based on the layered architecture reduces design time and cost, and allows for easier integration, operation, upgrades, maintenance, and repair.
Abstract:
Embodiments of the invention are directed to an unmanned air vehicle (UAV) system and a small unmanned air vehicle (SUAV) system for deploying and towing a sensor in a tow medium, and to methods related thereto. A UAV-sensor towing package comprises a fixed-wing UAV including a control and signal processing platform, a long range data RF link operably connected to the control and signal processing platform, a UAV wireless data link operably connected to the control and signal processing platform, and a tow body deployment system operably connected to the control and signal processing platform; a tow line attached at an end thereof to the UAV; a tow body attached to another end of the tow line; and a communications link including a transmitter/receiver component coupled to the tow line, and a T/R wireless data transmission link (194) operably connected with the transmitter/receiver component and the UAV wireless data link. A method for towing a tethered tow body through a tow medium along a tow track with a fixed-wing UAV at a tow body velocity that is less than a stall speed of the UAV along a forward UAV tow path comprises providing a UAV, a tow line attached at an end thereof to the UAV, and a tow body attached to another end of the tow line; flying the UAV to locate the tow body in a selected location of a tow medium; maneuvering the UAV along a non-horizontally-oriented, generally circular flight path (altitude tilted orbit) with a forward (surface) velocity along the forward UAV tow path corresponding to the tow track, wherein the tow body velocity in the tow medium is less than a stall speed of the UAV along the forward UAV tow path.
Abstract:
An air vehicle assembly and a corresponding method for launching an air vehicle assembly are provided, along with corresponding control systems and methods. The air vehicle assembly may include a plurality of air vehicles releasably joined to one another during a portion of the flight, such as during take-off and landing. By being releasably joined to one another, such as during take-off and landing, the air vehicles can rely upon and assist one another during the vertical take-off and landing while being designed to have a greater range and higher endurance following the transition to forward flight, either while remaining coupled to or following separation from the other air vehicles. By taking into account the states of the other air vehicles, the control system and method also permit the air vehicles of an air vehicle assembly to collaborate.
Abstract:
An aerial robot is disclosed. The aerial robot may include at least one pair of counter-rotating blades or propellers, which may be contained within a circumferential shroud or a duct. In one embodiment, the aerial robot may have the ability to hover and move indefinitely. Electric power to the robot may be provided by a tether or an on-board power supply. In tethered embodiments, a solid-state, electronic voltage transformer may be used to reduce a high voltage, low current source to lower voltage, higher current source. In one embodiment, secure data communication between a ground unit and the aerial robot is facilitated by impressing high bandwidth serial data onto the high voltage tether wires or a thin optical fiber which is co-aligned with the tether wires. In one embodiment, precise navigational and position controls, even under extreme wind loads, are facilitated by an on-board GPS unit and optical digital signal processors. In one embodiment, if the tether detaches, precision free-flight is possible with on-board batteries.
Abstract:
An air vehicle assembly and a corresponding method for launching an air vehicle assembly are provided, along with corresponding control systems and methods. The air vehicle assembly may include a plurality of air vehicles releasably joined to one another during a portion of the flight, such as during take-off and landing. By being releasably joined to one another, such as during take-off and landing, the air vehicles can rely upon and assist one another during the vertical take-off and landing while being designed to have a greater range and higher endurance following the transition to forward flight, either while remaining coupled to or following separation from the other air vehicles. By taking into account the states of the other air vehicles, the control system and method also permit the air vehicles of an air vehicle assembly to collaborate.
Abstract:
A solar rechargeable, long-duration, span-loaded flying wing, having no fuselage or rudder. Having a two-hundred foot wingspan that mounts photovoltaic cells on most all of the wing's top surface, the aircraft uses only differential thrust of its eight propellers to turn, pitch and yaw. The wing is configured to deform under flight loads to position the propellers such that the control can be achieved. Each of five segments of the wing has one or more motors and photovoltaic arrays, and produces its own lift independent of the other segments, to avoid loading them. Five two-sided photovoltaic arrays, in all, are mounted on the wing, and receive photovoltaic energy both incident on top of the wing, and which is incident also from below, through a bottom, transparent surface.
Abstract:
A system for basing drones is described. A network of geographically diverse hangars provides storage and charging locations as well as backhaul communications infrastructure and video monitoring. As drones are needed, a central command point tasks an available drone, which may or may not already be located in proximity to a target. If additional drones are needed, drones can be flown to the area of interest and continuous coverage provided by charging drones while an active drone is conducting the mission, then rotating charged drones into the active mission. Structures for the hangars, the overall system, and methods of operation are described.
Abstract:
An automatic spraying unmanned aerial vehicle (UAV) system based on dynamic adjustment of early warning range and a method thereof are disclosed. In the automatic spraying UAV system, an unmanned aerial vehicle analyzes a forward direction and a forward speed of a staff appearing in an environment video, calculates a preset distance, and generates an early-warning range by extending outwardly a spraying range by a preset distance; when determining the staff appears within the early-warning range in the environment video, the unmanned aerial vehicle pauses an automatic spraying operation, so as to achieve the technical effect of improving safety of the staff in an operation area by dynamically adjusting the early-warning range of the automatic spraying operation of the unmanned aerial vehicle.
Abstract:
Disclosed is a drone management system including a plurality of drones configured to fly, a plurality of vehicles each provided with a landing field where at least one of the drones is able to take off and land, a reception unit configured to receive a request for a service using a drone, an acquisition unit configured to acquire positional relationships between the drones and the vehicles, and a controller configured to select a first drone that flies to a destination of the service from among the drones and select a first vehicle as a landing destination of the first drone from among, the vehicles based on the positional relationships between the drones and the vehicles.