Abstract:
A glass optical waveguide preform is formed by chemical reaction of gaseous and/or vaporized ingredients within a glass substrate tube. A reactant feed tube extends into a first end of the substrate tube. One of the reactants flows through the feed tube, and another flows through the annular channel between the feed and substrate tubes. The reactants combine just downstream of the end of the feed tube and react to form particulate material, at least a portion of which deposit in the substrate tube. The output end of the feed tube traverses the substrate tube so that the region of maximum soot deposition moves along the length of the substrate tube. A hot zone traverses the substrate tube in synchronism with the feed tube to sinter the deposited soot.
Abstract:
Aspects of the embodiments are directed to systems and methods for forming an optical fiber in a low gravity environment, and an optical fiber formed in a low gravity environment. The system can include a preform holder configured to secure a preform; a heating element secured to a heating element stage and residing adjacent the preform holder; a heating element stage motor configured to move the heating element stage; a tension sensor; a spool; a spool tension motor coupled to the spool and configured to rotate the spool; and a control system communicably coupled to the heating element stage motor and the spool tension motor and configured to control the movement of the heating element stage based on a rotational speed of the spool. The optical fiber can include a fluoride composition, such ZrF4-BaF2-LaF3-AlF3-NaF (ZBLAN), and can be characterized by an insertion loss in a range from 13 dB/1000 km to 120 dB/1000 km.
Abstract:
Aspects of the embodiments are directed to systems and methods for forming an optical fiber in a low gravity environment, and an optical fiber formed in a low gravity environment. The system can include a preform holder configured to secure a preform; a heating element secured to a heating element stage and residing adjacent the preform holder; a heating element stage motor configured to move the heating element stage; a tension sensor; a spool; a spool tension motor coupled to the spool and configured to rotate the spool; and a control system communicably coupled to the heating element stage motor and the spool tension motor and configured to control the movement of the heating element stage based on a rotational speed of the spool. The optical fiber can include a fluoride composition, such ZrF4-BaF2-LaF3-AlF3-NaF (ZBLAN), and can be characterized by an insertion loss in a range from 13 dB/1000 km to 120 dB/1000 km.
Abstract:
Optical fibers with previously unattainable characteristics and the method of producing the same are disclosed and claimed herein. Specifically, the application discloses and claims a method to produce ZBLAN, Indium Fluoride, Germanate and Chalcogenide optical fibers and other similar optical fibers in a microgravity environment. The resulting optical fibers have unique molecular structures not attainable when optical fibers with the identical chemical composition are produced in a standard 1 gravity environment.The method of the invention requires a novel draw tower and modified preform, which are specifically designed to operate in microgravity environments. A lead wire is inserted into the preform that, when wound onto a spool in the draw tower, causes a fiber to form. The pull rate of the lead wire controls the diameter of the fiber.
Abstract:
An apparatus used for the fabrication of fiberoptic waveguides utilizing a novel melting and resolidifying apparatus and method while under microgravity conditions is disclosed. In one embodiment, the optical fiber core has a lower melting point than the cladding and the core is melted and resolidified under microgravity conditions. The molten lower melting point core is thus contained by the higher melting point cladding while under microgravity conditions.
Abstract:
Various embodiments of optical fiber designs and fabrication processes for ultra small core fibers (USCF) are disclosed. In some embodiments, the USCF includes a core that is at least partially surrounded by a region comprising first features. The USCF further includes a second region at least partially surrounding the first region. The second region includes second features. In an embodiment, the first features are smaller than the second features, and the second features have a filling fraction greater than about 90 percent. The first features and/or the second features may include air holes. Embodiments of the USCF may provide dispersion tailoring. Embodiments of the USCF may be used with nonlinear optical devices configured to provide, for example, a frequency comb or a supercontinuum.
Abstract:
A method is provided for eliminating crystals in non-oxide optical fiber preforms as well as optical fibers drawn therefrom. The optical-fiber-drawing axis of the preform is aligned with the force of gravity. A magnetic field is applied to the preform as it is heated to at least a melting temperature thereof. The magnetic field is applied in a direction that is parallel to the preform's optical-fiber-drawing axis. The preform is then cooled to a temperature that is less than a glass transition temperature of the preform while the preform is maintained in the magnetic field. When the processed preform is to have an optical fiber drawn therefrom, the preform's optical-fiber-drawing axis is again aligned with the force of gravity and a magnetic field is again applied along the axis as the optical fiber is drawn from the preform.
Abstract:
To overcome problems of fabricating conventional core-clad optical fibre from non-silica based (compound) glass, it is proposed to fabricate non-silica based (compound) glass optical fibre as holey fibre i.e. one contining Longitudinal holes in the cladding. This removes the conventional problems associated with mismatch of the physical properties of the core and clad compound glasses, since a holey fibre can be made of a single glass composition. With a holey fibre, it is not necessary to have different glasses for the core and cladding, since the necessary refractive index modulation between core and cladding is provided by the microstructure of the clad, i.e. its holes, rather than by a difference in materials properties between the clad and core glasses. Specifically, the conventional thermal mismatch problems between core and clad are circumvented. A variety of fibre types can be fabricated from non-silica based (compounds) glasses, for example: single-mode fibre; photonic band gap fibre; highly non-linear fibre; fibre with photosensitivity written gratings and other refractive index profile structures; and rare-earth doped fibres (e.g. Er, Nd, Pr) to provide gain media for fibre amplifiers and lasers.
Abstract:
A method is provided for molding from glass certain complex optical components, such as lenses, microlens, arrays of microlenses, and gratings or surface-relief diffusers having fine or hyperfine microstructures suitable for optical or electro-optical applications. Thereby, mold masters or patterns, which define the profile of the optical components, made on metal alloys, particularly titanium or nickel alloys, or refractory compositions, with or without a non-reactive coating are used. Given that molding optical components from oxide glasses has numerous drawbacks, it has been discovered in accordance with the invention that non-oxide glasses substantially eliminates these drawbacks. The non-oxide glasses, such as chalcogenide, chalcohalide, and halide glasses, may be used in the mold either in bulk, planar, or power forms. In the mold, the glass is heated to about 10–110° C., preferably about 50° C., above its transition temperature (Tg), at which temperature the glass has a viscosity that permits it to flow and conform exactly to the pattern of the mold.
Abstract:
Microstructured optical fibre is fabricated using extrusion. The main design of optical fibre has a core suspended in an outer wall by a plurality of struts. A specially designed extruder die is used which comprises a central feed channel, flow diversion channels arranged to divert material radially outwards into a welding chamber formed within the die, a core forming conduit arranged to receive material by direct onward passage from the central feed channel, and a nozzle having an outer part in flow communication with the welding chamber and an inner part in flow communication with the core forming conduit, to respectively define an outer wall and core of the preform. With this design a relatively thick outer wall can be combined with thin struts (to ensure extinction of the optical mode field) and a core of any desired diameter or other thickness dimension in the case of non-circular cores. As well as glass, the extrusion process is suitable for use with polymers. The microstructured optical fibre is considered to have many potential device applications, in particular for non-linear devices, lasers and amplifiers.