Abstract:
The invention relates to a method for the production of porous materials by the expansion of polymer gels and to the porous materials produced by such a method and to a moulded body.
Abstract:
A method for making a shapeable article from poly(lactic acid) includes treating solid poly(lactic acid) that results in the solid poly(lactic acid) having a crystallinity of at least 20% by weight based on the weight of the solid poly(lactic acid) and a gas concentration of 6% to 16% by weight based on the weight of the solid poly(lactic acid); and heating the solid poly(lactic acid) having said minimum crystallinity and gas concentration to produce a cellular poly(lactic acid) article that is shapeable. The shapeable cellular poly(lactic acid) article is advantageous in that the article can be further shaped by heat and/or pressure (or vacuum), such as via thermoforming, into a variety of useful products.
Abstract:
This invention relates to the field of thermal insulation. In particular, the invention describes superinsulation articles having a desired porosity, reduced pore size and cost-effective methods for manufacturing such articles. In one aspect of the present invention, the article may comprise a material system with at least about 20% porosity. In a further aspect of the invention, an article may comprise greater than about 25% of nanopores having a pore size no greater than about 1500 nanometers in its shortest axis.
Abstract:
This invention relates to the field of thermal insulation. In particular, the invention describes superinsulation articles having a desired porosity, reduced pore size and cost-effective methods for manufacturing such articles. In one aspect of the present invention, the article may comprise a material system with at least about 20% porosity. In a further aspect of the invention, an article may comprise greater than about 25% of nanopores having a pore size no greater than about 1500 nanometers in its shortest axis.
Abstract:
The present invention relates to a porous resin sheet which is a single-layer porous resin sheet including a thermoplastic resin, in which the porous resin sheet has a thickness of 1.0 mm or more, a dielectric constant at 1 GHz of 2.00 or less, a dielectric loss tangent of 0.0050 or less, and an elastic modulus of 200 MPa or more. Also, the present invention relates to a method for producing the porous resin sheet, the method including: a gas impregnation step of impregnating a thermoplastic resin composition containing at least a thermoplastic resin with a non-reactive gas under pressure; and after the gas impregnation step, a foaming step of reducing the pressure to foam the thermoplastic resin composition.
Abstract:
Methods are disclosed for making liquid crystalline polymer (LCP) foams and foam structures of various shapes and forms. LCP foams of the invention have a high compression strength suitable for high performance energy-absorption and energy-impact applications and devices.
Abstract:
The present invention relates to a resin composition for a polyolefin resin foam, including: a polyolefin (A) having a melt flow rate (MFR) at a temperature of 230° C. of 0.2 to 0.7 g/10 min and a melt tension at break measured at a temperature of 190° C. of 30 cN or more; and a polyolefin (B) having a melt flow rate (MFR) at a temperature of 230° C. of 1.5 to 10 g/10 min and a melt tension at break measured at a temperature of 190° C. of 10 cN or more, in which the polyolefin (B) is contained in an amount of from 15 to 75 parts by weight based on 100 parts by weight of the polyolefin (A).
Abstract:
Disclosed herein are methods and pressure vessels for solid-state microcellular processing of thermoplastic rolls and sheets. In one embodiment, the present invention is directed to a method for making a gas impregnated interleaved roll, which method comprises: providing a pressure vessel having an internal pressure chamber and a rotatable shaft horizontally positioned within the pressure chamber; placing an interleaved roll about the rotatable shaft and within the pressure chamber, wherein the interleaved roll is made from a thermoplastic material sheet interleaved together with a gas-channeling material sheet; pressurizing the pressure chamber to a selected pressure; rotating the rotatable shaft having the interleaved roll thereabouts (thereby rotating the interleaved roll) while under pressure for a selected period of time; and depressurizing the internal chamber to yield the gas impregnated interleaved roll. In other embodiments, the invention is directed to multi-chambered pressure vessels for gas impregnation of thermoplastic rolls, sheets, and films.
Abstract:
Expanded polystyrene, foamed articles and methods of making the same are described herein. The expanded polystyrene generally includes polystyrene selected from expandable polystyrene and extrusion polystyrene, the polystyrene exhibiting a molecular weight of from about 130,000 Daltons to about 220,000 Daltons; a melt flow index of from about 20 to about 30 and a density of from about 0.1 lb/ft3 to about 10 lb/ft3; and wherein the expanded polystyrene exhibits a density of from about 0.1 lb/ft3 to about 10 lb/ft3.
Abstract translation:膨胀聚苯乙烯,发泡制品及其制备方法在本文中描述。 发泡聚苯乙烯通常包括选自可发性聚苯乙烯和挤出聚苯乙烯的聚苯乙烯,聚苯乙烯的分子量为约130,000道尔顿至约220,000道尔顿; 熔体流动指数为约20至约30,密度为约0.1lb / ft 3至约10lb / ft 3; 并且其中所述发泡聚苯乙烯的密度为约0.1lb / ft 3至约10lb / ft 3。
Abstract:
A method for making a shapeable article from poly(lactic acid) includes treating solid poly(lactic acid) that results in the solid poly(lactic acid) having a crystallinity of at least 20% by weight based on the weight of the solid poly(lactic acid) and a gas concentration of 6% to 16% by weight based on the weight of the solid poly(lactic acid); and heating the solid poly(lactic acid) having said minimum crystallinity and gas concentration to produce a cellular poly(lactic acid) article that is shapeable. The shapeable cellular poly(lactic acid) article is advantageous in that the article can be further shaped by heat and/or pressure (or vacuum), such as via thermoforming, into a variety of useful products.